Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8420, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600155

RESUMO

In recent years biochar (BC) has gained importance for its huge carbon (C) sequestration potential and positive effects on various soil functions. However, there is a paucity of information on the long-term impact of BC on the priming effect and nutrient availability in soil with different properties. This study investigates the effects of BC prepared from rice husk (RBC4, RBC6), sugarcane bagasse (SBC4, SBC6) and mustard stalk (MBC4, MBC6) at 400 and 600 °C on soil C priming and nitrogen (N), phosphorus (P), and potassium (K) availability in an Alfisol, Inceptisol, and Mollisol. BC properties were analyzed, and its decomposition in three soil orders was studied for 290 days in an incubation experiment. Post-incubation, available N, P, and K in soil were estimated. CO2 evolution from BC and soil alone was also studied to determine the direction of priming effect on native soil C. Increasing pyrolysis temperature enhanced pH and EC of most of the BC. The pyrolysis temperature did not show clear trend with respect to priming effect and nutrient availability across feedstock and soil type. MBC6 increased C mineralization in all the soil orders while RBC6 in Alfisol and SBC6 in both Inceptisol and Mollisol demonstrated high negative priming, making them potential amendments for preserving native soil C. Most of the BC showed negative priming of native SOC in long run (290 days) but all these BC enhanced the available N, P, and K in soil. SBC4 enhanced N availability in Alfisol and Inceptisol, RBC4 improved N and P availability in Mollisol and P in Alfisol and MBC6 increased K availability in all the soils. Thus, based on management goals, tailored BC or blending different BC can efficiently improve C sequestration and boost soil fertility.


Assuntos
Carbono , Saccharum , Carbono/análise , Solo/química , Celulose , Carvão Vegetal/química , Nutrientes , Índia
2.
Sci Rep ; 10(1): 21754, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303804

RESUMO

Elevated levels of nitrous oxide (N2O) emissions are a matter of concern in agricultural soils especially when flooding (hypoxic conditions) results from over irrigation or frequent rains. This study is the first to report the use of two solid oxygen fertilizers (SOFs, calcium peroxide and magnesium peroxide) to reduce N2O production in mineral and organic soils amended with N fertilizer in a short-term laboratory incubation besides two biochars. In general, organic soil had greater N2O production than mineral soil. Soils amended with nitrogen fertilizer exhibited increased N2O production, by 74 times in mineral soil and 2 times in organic soil. Both solid oxygen fertilizers in mineral soil (98-99%) and calcium peroxide in organic soil (25%) successfully reduced N2O production than corresponding N fertilized treatments. Additionally, a greater level of available nitrate-N (52-57 and 225 mg kg-1 in mineral and organic soil, respectively) was recorded with the solid oxygen fertilizers. Corn residue biochar with N fertilizer increased N2O production in mineral soil but decreased in organic soil, while pine bark biochar with N did not affect the N2O production in either soil. Depending on soil, appropriate SOFs applied were able to reduce N2O production and maintain greater nitrate-N levels in flooded soil. Thus, solid oxygen fertilizers can potentially be used as an effective way to reduce N2O emission from hypoxic soil in agricultural production systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...