Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cereal Sci ; 104: 103398, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35340793

RESUMO

The physicochemical and agronomic properties of a new form of bread wheat lacking B-type starch granules (BlessT) were assessed. Three BlessT mutant lines made by combining homoeologous deletions of BGC1, a gene responsible for the control of B-granule content, were compared with two sibling lines with normal starch phenotype and the parent line, cv. Paragon. Quantification of starch granule size and number in developing grain confirmed the lack of small, B-type starch granules throughout development in BlessT. Most starch, flour, grain and loaf characteristics did not vary between BlessT and the wild type sibling controls. However, BlessT starches had higher water absorption, reduced grain hardness and higher protein content, and dough made from BlessT flour required more water and had increased elasticity. Despite the lack of B-granules, BlessT lines do not display a significant decrease in total starch content suggesting that it should be possible to produce commercial wheat varieties that lack B-type starch granules without compromising yield. These findings support the potential utility of this novel type of wheat as a specialist crop in applications ranging from bread making and alcohol production to improved industrial starch products.

2.
J Nutr ; 152(6): 1426-1437, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35102419

RESUMO

BACKGROUND: Resistant starch (RS) confers many health benefits, mostly through the microbial production of SCFAs, but foods containing appreciable RS are limited. High-amylose wheat (HAW) is high in RS and lowers the glycemic response of foods, but whether it can improve gastrointestinal health measures is unknown. OBJECTIVES: The objective of this study was to determine whether daily consumption of HAW food products improved markers of gastrointestinal health in healthy men and women compared with similar foods made from conventional wheat. METHODS: Eighty healthy adults (47 women and 33 men) were enrolled in a 4-arm parallel, randomized-controlled, double-blind trial. After a 2-wk low-dietary fiber run-in period, they were randomly allocated to 1 of 4 treatment groups: low-amylose wheat (LAW)-refined (LAW-R), LAW-wholemeal (LAW-W), HAW-refined (HAW-R), and HAW-wholemeal (HAW-W) and consumed the assigned test bread (160 g/d) and biscuits (75 g/d) for 4 wk. Fecal biochemical markers were measured at baseline and 4 wk. Microbial abundance and diversity were quantified using 16S ribosomal RNA sequencing and perceived gut comfort by a semiquantitative questionnaire completed at baseline, 2 wk, and 4 wk. RESULTS: HAW showed similar effects on fecal output and excretion of total SCFA compared with LAW, but changes were observed in secondary measures for the refined treatment groups. At 4 wk, the HAW-R group had 38% higher fecal butyrate excretion than the LAW-R group (P < 0.05), and higher fecal SCFA-producing bacteria, Roseburia inulinivorans (P < 0.001), than at baseline. In comparison with baseline, LAW-R increased fecal p-cresol concentration, and fecal abundance of a p-cresol-producing bacterium, Clostridium from the Peptostreptococcaceae family, but both were reduced by HAW-R. Amylose level did not affect measures of fecal consistency or adversely affecting digestive comfort. CONCLUSIONS: Increasing RS intake of healthy adults by substituting refined conventional wheat with refined HAW modulates fecal metabolites and microbes associated with gastrointestinal health.This trial was registered at anzctr.org.au as ACTRN12618001060235.


Assuntos
Microbioma Gastrointestinal , Adulto , Amilose , Bactérias , Biomarcadores , Fezes/microbiologia , Feminino , Farinha , Humanos , Masculino , Amido Resistente , Triticum
3.
J Nutr ; 149(8): 1335-1345, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31162585

RESUMO

BACKGROUND: Conventional wheat-based foods contain high concentrations of readily digestible starch that commonly give these foods a high postprandial glycemic response and may contribute to the development of type 2 diabetes and cardiovascular disease. OBJECTIVES: The aim of this study was to determine if bread made from high-amylose wheat (HAW) and enriched in resistant starch dampens postprandial glycemia compared with bread made from conventional low-amylose wheat (LAW). METHODS: This single-center, randomized, double-blinded, crossover controlled study involved 7 consecutive weekly visits. On separate mornings, 20 healthy nondiabetic men and women (mean age 30 ± 3 y; body mass index 23 ± 0.7 kg/m2) consumed a glucose beverage or 4 different breads (each 121 g); LAW-R (refined), LAW-W (wholemeal), HAW-R, or HAW-W. The starch contents of the LAW and HAW breads were 24% and 74% amylose, respectively. Venous blood samples were collected at regular intervals before and for 3 h after the breakfast meal to measure plasma glucose, insulin, ghrelin, and incretin hormone concentrations, and the incremental area under the curve (AUC) was calculated (mmol/L × 3 h). Satiety and cravings were also measured at 30-min intervals during the postprandial period. RESULTS: HAW breads had a glycemic response (AUC) that was 39% less than that achieved with conventional wheat breads (HAW 39 ± 5 mmol/L × 3 h; LAW 64 ± 5 mmol/L × 3 h; P < 0.0001). Insulinemic and incretin responses were 24-30% less for HAW breads than for LAW breads (P < 0.05). Processing of the flour (wholemeal or refined) did not affect the glycemic, insulinemic, or incretin response. The HAW breads did not influence plasma ghrelin, or subjective measures of satiety or cravings during the postprandial period. CONCLUSIONS: Replacing LAW with HAW flour may be an effective strategy for lowering postprandial glycemic and insulinemic responses to bread in healthy men and women, but further research is warranted. This trial was registered at the Australian and New Zealand Clinical Trials Registry as ACTRN12616001289404.


Assuntos
Amilose/administração & dosagem , Glicemia/metabolismo , Período Pós-Prandial , Triticum/química , Adulto , Amilose/metabolismo , Estudos Cross-Over , Feminino , Trânsito Gastrointestinal , Glucose/administração & dosagem , Voluntários Saudáveis , Humanos , Incretinas/sangue , Insulina/sangue , Masculino , Saciação
4.
Plant Biotechnol J ; 13(9): 1276-86, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25644858

RESUMO

Resistant starch (RS), a type of dietary fibre, plays an important role in human health; however, the content of RS in most modern processed starchy foods is low. Cereal starch, when structurally manipulated through a modified starch biosynthetic pathway to greatly increase the amylose content, could be an important food source of RS. Transgenic studies have previously revealed the requirement of simultaneous down-regulation of two starch branching enzyme (SBE) II isoforms both located on the long arm of chromosome 2, namely SBEIIa and SBEIIb, to elevate the amylose content in wheat from ~25% to ~75%. The current study revealed close proximity of genes encoding SBEIIa and SBEIIb isoforms in wheat with a genetic distance of 0.5 cM on chromosome 2B. A series of deletion and single nucleotide polymorphism (SNP) loss of function alleles in SBEIIa, SBEIIb or both was isolated from two different wheat populations. A breeding strategy to combine deletions and SNPs generated wheat genotypes with altered expression levels of SBEIIa and SBEIIb, elevating the amylose content to an unprecedented ~85%, with a marked concomitant increase in RS content. Biochemical assays were used to confirm the complete absence in the grain of expression of SBEIIa from all three genomes in combination with the absence of SBEIIb from one of the genomes.


Assuntos
Amilose/biossíntese , Triticum/genética , Alelos , Amilose/genética , Amilose/metabolismo , Cruzamentos Genéticos , Genes de Plantas/genética , Marcadores Genéticos/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Triticum/metabolismo
5.
Anal Chim Acta ; 734: 45-53, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22704471

RESUMO

Many scientific instruments produce multivariate images characterized by three-way tables, an element of which represents the intensity value at a spatial location for a given spectral channel. A problem frequently encountered is to attempt estimating the contributions of some compounds at each location of these images. Usual regression methods of calibration, such as PLS, require having a matrix of calibration X (n×p) and the corresponding vector y of the dependent variable (n×1). X can be built up by sampling pixel-vectors in the images, but y is sometimes difficult to obtain, if the surface of the samples is formed by chemically heterogeneous regions. In this case, the quantitative analyses related to y may be difficult, if the pixels represent very small areas (for example on microscopic images) or very large ones (satellite images). This is for example the case when dealing with biological solid samples representing different tissues. Direct Calibration (DC), sometimes referred to as "spectral unmixing", do not require having such a calibration set. However, it is indeed needed to have both a matrix of "perturbing" pixel-vectors (noted K) and a vector of the "pure" component spectrum to be analyzed (p), which are more easily obtainable. For estimating the contribution, the unknown pixel vector x and the pure spectrum p are first projected orthogonally onto K giving the vectors x(⊥) onto p(⊥), respectively. The contribution is then estimated by a second projection of x(⊥) onto p(⊥). A method, based on principal component analysis, for determining the optimal dimensions of K is proposed. DC was applied on a collection of multivariate images of kernel of wheat to estimate the proportion of three tissues, namely out-layers, "waxy"endosperm and normal endosperm. The eventual results are presented as images of wheat kernels in false colors associated to the estimated proportions of the tissues. It is shown that DC is appropriate for estimating contributions in situations in which the more usual methods of calibration cannot be applied.


Assuntos
Imagem Molecular , Análise Multivariada , Amilopectina/química , Amilose/química , Calibragem , Análise de Componente Principal , Triticum/química
6.
Plant J ; 43(3): 398-412, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16045475

RESUMO

A minimum of four soluble starch synthase families have been documented in all starch-storing green plants. These activities are involved in amylopectin synthesis and are extremely well conserved throughout the plant kingdom. Mutants or transgenic plants defective for SSII and SSIII isoforms have been previously shown to have a large and specific impact on the synthesis of amylopectin while the function of the SSI type of enzymes has remained elusive. We report here that Arabidopsis mutants, lacking a plastidial starch synthase isoform belonging to the SSI family, display a major and novel type of structural alteration within their amylopectin. Comparative analysis of beta-limit dextrins for both wild type and mutant amylopectins suggests a specific and crucial function of SSI during the synthesis of transient starch in Arabidopsis leaves. Considering our own characterization of SSI activity and the previously described kinetic properties of maize SSI, our results suggest that the function of SSI is mainly involved in the synthesis of small outer chains during amylopectin cluster synthesis.


Assuntos
Amilopectina/biossíntese , Arabidopsis/metabolismo , Folhas de Planta/metabolismo , Sintase do Amido/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Cromatografia em Gel , Mapeamento Cromossômico , Escherichia coli/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Cinética , Microscopia Eletrônica de Transmissão , Fenótipo , Folhas de Planta/enzimologia , Folhas de Planta/ultraestrutura , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
Plant Physiol ; 138(1): 184-95, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15849301

RESUMO

Mutant lines defective for each of the four starch debranching enzyme (DBE) genes (AtISA1, AtISA2, AtISA3, and AtPU1) detected in the nuclear genome of Arabidopsis (Arabidopsis thaliana) were produced and analyzed. Our results indicate that both AtISA1 and AtISA2 are required for the production of a functional isoamylase-type of DBE named Iso1, the major isoamylase activity found in leaves. The absence of Iso1 leads to an 80% decrease in the starch content in both lines and to the accumulation of water-soluble polysaccharides whose structure is similar to glycogen. In addition, the residual amylopectin structure in the corresponding mutant lines displays a strong modification when compared to the wild type, suggesting a direct, rather than an indirect, function of Iso1 during the synthesis of amylopectin. Mutant lines carrying a defect in AtISA3 display a strong starch-excess phenotype at the end of both the light and the dark phases accompanied by a small modification of the amylopectin structure. This result suggests that this isoamylase-type of DBE plays a major role during starch mobilization. The analysis of the Atpu1 single-mutant lines did not lead to a distinctive phenotype. However, Atisa2/Atpu1 double-mutant lines display a 92% decrease in starch content. This suggests that the function of pullulanase partly overlaps that of Iso1, although its implication remains negligible when Iso1 is present within the cell.


Assuntos
Amilases/deficiência , Amilopectina/metabolismo , Arabidopsis/genética , Cloroplastos/genética , Glicogênio/metabolismo , Mutagênese , Amilopectina/genética , Arabidopsis/enzimologia , Cloroplastos/enzimologia , Genes de Plantas , RNA Mensageiro/genética , RNA de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...