Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 13: 1033216, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589427

RESUMO

There is strong evidence that the omega-3 polyunsaturated fatty acids (n-3 PUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) have cardioprotective effects. n-3 PUFAs cause vasodilation in hypertensive patients, in part controlled by increased membrane conductance to potassium. As KATP channels play a major role in vascular tone regulation and are involved in hypertension, we aimed to verify whether n-3 PUFA-mediated vasodilation involved the opening of KATP channels. We used a murine model in which the KATP channel pore subunit, Kir6.1, is deleted in vascular smooth muscle. The vasomotor response of preconstricted arteries to physiologically relevant concentrations of DHA and EPA was measured using wire myography, using the channel blocker PNU-37883A. The effect of n-3 PUFAs on potassium currents in wild-type native smooth muscle cells was investigated using whole-cell patch clamping. DHA and EPA induced vasodilation in mouse aorta and mesenteric arteries; relaxations in the aorta were sensitive to KATP blockade with PNU-37883A. Endothelium removal didn't affect relaxation to EPA and caused a small but significant inhibition of relaxation to DHA. In the knock-out model, relaxations to DHA and EPA were unaffected by channel knockdown but were still inhibited by PNU-37883A, indicating that the action of PNU-37883A on relaxation may not reflect inhibition of KATP. In native aortic smooth muscle cells DHA failed to activate KATP currents. We conclude that DHA and EPA cause vasodilation in mouse aorta and mesenteric arteries. Relaxations in blocker-treated arteries from knock-out mice demonstrate that KATP channels are not involved in the n-3 PUFA-induced relaxation.

2.
Br J Pharmacol ; 178(4): 860-877, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33283269

RESUMO

Hypertension is often characterised by impaired vasodilation involving dysfunction of multiple vasodilatory mechanisms. ω-3 polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) can reduce blood pressure and vasodilation. In the endothelium, DHA and EPA improve function including increased NO bioavailability. However, animal studies show that DHA- and EPA-mediated vasodilation persists after endothelial removal, indicating a role for vascular smooth muscle cells (VSMCs). The vasodilatory effects of ω-3 PUFAs on VSMCs are mediated via opening of large conductance calcium-activated potassium channels (BKCa ), ATP-sensitive potassium channels (KATP ) and possibly members of the Kv 7 family of voltage-activated potassium channels, resulting in hyperpolarisation and relaxation. ω-3 PUFA actions on BKCa and voltage-gated ion channels involve electrostatic interactions that are dependent on the polyunsaturated acyl tail, cis-geometry of these double bonds and negative charge of the carboxyl headgroup. This suggests structural manipulation of ω-3 PUFA could generate novel, targeted, therapeutic leads.


Assuntos
Ácidos Graxos Ômega-3 , Hipertensão , Animais , Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Vasodilatação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...