Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36770255

RESUMO

Structural damping largely determines the dynamic properties of mechanical structures, especially those whose functioning is accompanied by time-varying loads. These loads may cause vibrations of a different nature, which adversely affects the functionality of the structure. Therefore, many studies have been carried out on vibration reduction methods over the last few years. Among them, the passive vibration damping method, wherein a suitable polymer system with appropriate viscoelastic properties is used, emerges as one of the simplest and most effective methods. In this view, a novel approach to conduct passive elimination of vibrations, consisting of covering elements of structures with low dynamic stiffness with polymeric pads, was developed. Herein, polymer covers were manufactured via fused filament fabrication technology (3D printing) and were joined to the structure by means of a press connection. Current work was focused on determining the damping properties of chosen polymeric materials, including thermoplastic elastomers (TPE). All investigated materials were characterized by means of differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), and mechanical properties (tensile test and Shore hardness). Lastly, the damping ability of pads made from different types of polymers were evaluated by means of dynamic tests.

2.
Materials (Basel) ; 14(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34771759

RESUMO

This study presents an analysis of changes in the vibration frequency and mode of vibration of a composite beam due to damage. A steel-concrete composite beam was considered, for which numerical analysis (RFE model) and experimental tests were conducted. Two levels of damage were introduced to the beam. To determine the changes in the mode of vibration before and after the damage, the modal assurance criterion (MAC) and its partial variation (PMAC) were applied. The curvature damage factor (CDF) was used to determine the changes in the modal curvature. The natural frequencies were sensitive to the introduced damage. The results show that the MAC is not effective in determining the location of damage in the connection plane. Two different coefficients were introduced to locate the damage. The PMAC was used for sections of subsequent modes of vibration and allowed effectively locating the damage. The CDF considered simultaneous changes in the curvatures of all vibration modes and was effective in locating the damage in the connection plane.

3.
Materials (Basel) ; 13(14)2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679824

RESUMO

At the stage of designing a special machine tool, it is necessary to analyze many variants of structural solutions of frames and load-bearing systems and to choose the best solution in terms of dynamic properties, in particular considering its resistance to chatter. For this reason, it is preferred to adopt a low-dimensional calculation model, which allows the user to reduce the necessary calculation time while maintaining a high accuracy. The paper presents the methodology of modeling the natural frequencies, mode shapes, and receptance functions of machine tool steel welded frames filled with strongly heterogenous polymer concrete, using low-dimensional models developed by the rigid finite elements method (RigFEM). In the presented study, a RigFEM model of a simple steel beam filled with polymer concrete and a frame composed of such beams were built. Then, the dynamic properties obtained on the basis of the developed RigFEM models were compared with the experimental results and the 1D and 3D finite element models (FEM) in terms of accuracy and dimensionality. As a result of the experimental verification, the full structural compliance of the RigFEM models (for beam and frame) was obtained, which was manifested by the agreement of the mode shapes. Additionally, experimental verification showed a high accuracy of the RigFEM models, obtaining for the beam model a relative error for natural frequencies of less than 4% and on average 2.2%, and for the frame model at a level not exceeding 11% and on average 5.5%. Comparing the RigFEM and FEM models, it was found that the RigFEM models have a slightly worse accuracy, with a dimensionality significantly reduced by 95% for the beam and 99.8% for the frame.

4.
Materials (Basel) ; 13(9)2020 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-32375286

RESUMO

The paper presents a new way to conduct passive elimination of vibrations consisting of covering elements of structures with low dynamic stiffness with polylactide (PLA). The PLA cover was created in 3D printing technology. The PLA cover was connected with the structure by means of a press connection. Appropriate arrangement of the PLA cover allows us to significantly increase the dissipation properties of the structure. The paper presents parametric analyses of the influence of the thickness of the cover and its distribution on the increase of the dissipation properties of the structure. Both analyses were carried out using finite element models (FEM). The effectiveness of the proposed method of increasing damping and the accuracy of the developed FEM models was verified by experimental studies. As a result, it has been proven that the developed FEM model of a free-free steel beam covered with polylactide enables the mapping of resonance frequencies at a level not exceeding 0.6% of relative error. Therefore, on its basis, it is possible to determine the parameters of the PLA cover. Comparing a free-free steel beam without cover with its PLA-covered counterpart, a reduction in the amplitude levels of the receptance function was achieved by up to 90%. The solution was validated for a steel frame for which a 37% decrease in the amplitude of the receptance function was obtained.

5.
Materials (Basel) ; 13(7)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244810

RESUMO

This paper presents a method for modeling the dynamic properties of steel-polymer concrete beams, the basic structural components of machine tools, assembly lines, vibratory machines, and other structures subjected to time-varying loads during operation. The presented method of modeling steel-polymer concrete beams was developed using the finite element method. Three models of beams differing in cross-sectional dimensions showed high agreement with experimental data: relative error in the case of natural frequencies did not exceed 5% (2.2% on average), the models were characterized by the full agreement of mode shapes and high agreement of frequency response functions with the results of experimental tests. Additionally, the developed beam models supported the reliable description of complex structures, as demonstrated on a spatial frame, obtaining a relative error for natural frequencies of less than 3% (on average 1.7%). Full agreement with the mode shapes and high agreement with the frequency response functions were achieved in the analyzed frequency range.

6.
Materials (Basel) ; 12(7)2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30978918

RESUMO

The production of modern machines requires parts with much greater geometric accuracy and surface geometry (SG) precision than several years ago. These requirements are met by so-called hybrid technologies that must simultaneously be inexpensive to implement. The integration of treatment procedures (usually in one operation) is geared towards achieving a synergistic effect. Combining different treatments from various technologies produces synergy, i.e., benefits greater than the optimization of each individual process done separately. This paper presents experimental results and numerical experiment data on surface plastic deformation. The hybrid technology used in the study was a combination of milling and finishing with plastic burnishing using a ceramic ball. These processes were integrated on a multi-axis CNC machining center. The plastic deformations of real surfaces were determined in simulations. The paper also discusses the structure of the model and how to use it to conduct a finite element method (FEM) computer simulation. The aim of the study was to determine how to use the potential developed model of hybrid treatment to predict the surface performance expressed by the amplitude, volume, and functional parameters of the surface geometry, with the EN-ISO 25178-2 profile.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...