Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Endocrinol ; 28(2): 260-72, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24422634

RESUMO

Retinoic acid (RA) controls many aspects of embryonic development by binding to specific receptors (retinoic acid receptors [RARs]) that regulate complex transcriptional networks. Three different RAR subtypes are present in vertebrates and play both common and specific roles in transducing RA signaling. Specific activities of each receptor subtype can be correlated with its exclusive expression pattern, whereas shared activities between different subtypes are generally assimilated to functional redundancy. However, the question remains whether some subtype-specific activity still exists in regions or organs coexpressing multiple RAR subtypes. We tackled this issue at the transcriptional level using early zebrafish embryo as a model. Using morpholino knockdown, we specifically invalidated the zebrafish endogenous RAR subtypes in an in vivo context. After building up a list of RA-responsive genes in the zebrafish gastrula through a whole-transcriptome analysis, we compared this panel of genes with those that still respond to RA in embryos lacking one or another RAR subtype. Our work reveals that RAR subtypes do not have fully redundant functions at the transcriptional level but can transduce RA signal in a subtype-specific fashion. As a result, we define RAR subtype-specific transcriptotypes that correspond to repertoires of genes activated by different RAR subtypes. Finally, we found genes of the RA pathway (cyp26a1, raraa) the regulation of which by RA is highly robust and can even resist the knockdown of all RARs. This suggests that RA-responsive genes are differentially sensitive to alterations in the RA pathway and, in particular, cyp26a1 and raraa are under a high pressure to maintain signaling integrity.


Assuntos
Gástrula/metabolismo , Receptores do Ácido Retinoico/metabolismo , Peixe-Zebra/genética , Animais , Sequência de Bases , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores do Ácido Retinoico/antagonistas & inibidores , Receptores do Ácido Retinoico/genética , Ácido Retinoico 4 Hidroxilase , Transdução de Sinais , Transcrição Gênica , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra
2.
Mol Endocrinol ; 26(8): 1316-26, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22700585

RESUMO

Central and peripheral mechanisms modulate food intake and energy balance in mammals and the precise role of the type 1 cannabinoid receptor (CB1) in these processes is still being explored. Using the zebrafish, Danio rerio, we show that rimonabant, a CB1-specific antagonist with an EC(50) of 5.15 × 10(-8) m, decreases embryonic yolk sac reserve use. We reveal a developmental overlap between CART genes and CB1 expression in the hypothalamus and medulla oblongata, two brain structures that play crucial roles in appetite regulation in mammals. We show that morpholino knockdown of CB1 or fasting decreases cocaine- and amphetamine-related transcript (CART)-3 expression. Strikingly, this down-regulation occurs only in regions coexpressing CB1 and CART3, reinforcing the link between CB1, CART, and appetite regulation. We show that rimonabant treatment impairs the fasting-induced down-regulation of CART expression in specific brain regions, whereas vehicle alone-treated embryos do not display this rescue of CART expression. Our data reveal that CB1 lies upstream of CART and signals the appetite through the down-regulation of CART expression. Thus, our results establish the zebrafish as a promising system to study appetite regulation.


Assuntos
Regulação do Apetite , Encéfalo/metabolismo , Regulação para Baixo , Privação de Alimentos , Receptor CB1 de Canabinoide/metabolismo , Peixe-Zebra/metabolismo , Animais , Encéfalo/embriologia , Agonistas de Receptores de Canabinoides/farmacologia , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Larva/metabolismo , Dados de Sequência Molecular , Obesidade/metabolismo , Obesidade/fisiopatologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/genética , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Rimonabanto , Saco Vitelino/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...