Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 194: 113624, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34534948

RESUMO

The excellent specificity and selectivity of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/associated nuclease (Cas) is determined by CRISPR RNA's (crRNA's) interchangeable spacer sequence, as well as the position and number of mismatches between target sequence and the crRNA sequence. Some diseases are characterized by epigenetic alterations rather than nucleotide changes, and are therefore unsuitable for CRISPR-assisted sensing methods. Here we demonstrate an in vitro diagnostic tool to discriminate single CpG site methylation in DNA by the use of methylation-sensitive restriction enzymes (MSREs) followed by Cas12a-assisted sensing. Non-methylated sequences are digested by MSREs, resulting in fragmentation of the target sequence that influences the R-loop formation between crRNA and target DNA. We show that fragment size, fragmentation position and number of fragments influence the subsequent collateral trans-cleavage activity towards single stranded DNA (ssDNA), enabling deducting the methylation position from the cleavage activity. Utilizing MSREs in combination with Cas12a, single CpG site methylation levels of a cancer gene are determined. The modularity of both Cas12a and MSREs provides a high level of versatility to the Cas12a-MSRE combined sensing method, which opens the possibility to easily and rapidly study single CpG methylation sites for disease detection.


Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , Metilação de DNA , Proteínas de Bactérias , Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas/genética , Ilhas de CpG , Clivagem do DNA , Endodesoxirribonucleases , Endonucleases/metabolismo
2.
Biomicrofluidics ; 14(4): 044111, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32774586

RESUMO

The use of microfluidics in artificial reproductive technologies for manipulation or assessment of spermatozoa is unique in the sense that it is not always an end point measurement and the sample may be used afterward. During microfluidic processing, spermatozoa are exposed to shear stress, which may harm viability and functioning of spermatozoa. The shear stresses during general microfluidic processing steps were calculated and compared to estimated shear stresses during ejaculation. The viability of boar and bull spermatozoa after microfluidic processing was studied and compared to the typical handling method (centrifugation) and to a control (the sample in a tube at the same temperature). The boar spermatozoa showed a small but significant decrease in viability of 6% after microfluidic handling. Bull spermatozoa proved to be less susceptible to shear stress and were not significantly affected by microfluidic processing. These data indicate that the impact of microfluidic processing on the viability of boar and bull spermatozoa is less than the literature values reported for flow cytometry and comparable to the impact of centrifugation.

3.
Biosens Bioelectron ; 166: 112445, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32758911

RESUMO

With the trend of moving molecular tests from clinical laboratories to on-site testing, there is a need for nucleic acid based diagnostic tools combining the sensitivity, specificity and flexibility of established diagnostics with the ease, cost effectiveness and speed of isothermal amplification and detection methods. A promising new nucleic acid detection method is Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated nuclease (Cas)-based sensing. In this method Cas effector proteins are used as highly specific sequence recognition elements that can be combined with many different read-out methods for on-site point-of-care testing. This review covers the technical aspects of integrating CRISPR/Cas technology in miniaturized sensors for analysis on-site. We start with a short introduction to CRISPR/Cas systems and the different effector proteins and continue with reviewing the recent developments of integrating CRISPR sensing in miniaturized sensors for point-of-care applications. Finally, we discuss the challenges of point-of-care CRISPR sensing and describe future research perspectives.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Ácidos Nucleicos/genética , Sistemas Automatizados de Assistência Junto ao Leito
4.
Anal Chem ; 92(4): 3302-3306, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31994387

RESUMO

Current male fertility diagnosis tests focus on assessing the quality of semen samples by studying the concentration, total volume, and motility of spermatozoa. However, other characteristics such as the chemotactic ability of a spermatozoon might influence the chance of fertilization. Here we describe a simple, easy to fabricate and handle, flow-free microfluidic chip to test the chemotactic response of spermatozoa made out of a hybrid hydrogel (8% gelatin/1% agarose). A chemotaxis experiment with 1 µM progesterone was performed that significantly demonstrated that boar spermatozoa are attracted by a progesterone gradient.


Assuntos
Quimiotaxia , Dispositivos Lab-On-A-Chip , Espermatozoides/química , Animais , Hidrogéis/química , Masculino , Progesterona/química , Suínos
5.
Microsyst Nanoeng ; 5: 24, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31123596

RESUMO

Men suffering from azoospermia can father a child, by extracting spermatozoa from a testicular biopsy sample. The main complication in this procedure is the presence of an abundance of erythrocytes. Currently, the isolation of the few spermatozoa from the sample is manually performed due to ineffectiveness of filtering methods, making it time consuming and labor intensive. The spermatozoa are smaller in both width and height than any other cell type found in the sample, with a very small difference compared with the erythrocyte for the smallest, making this not the feature to base the extraction on. However, the length of the spermatozoon is 5× larger than the diameter of an erythrocyte and can be utilized. Here we propose a microfluidic chip, in which the tumbling behavior of spermatozoa in pinched flow fractionation is utilized to separate them from the erythrocytes. We show that we can extract 95% of the spermatozoa from a sample containing 2.5% spermatozoa, while removing around 90% of the erythrocytes. By adjusting the flow rates, we are able to increase the collection efficiency while slightly sacrificing the purity, tuning the solution for the available sample in the clinic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...