Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 95(5): 883-92, 2006 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-16937404

RESUMO

Lipase-catalyzed kinetic resolution of racemates is a popular method for synthesis of chiral synthons. Most of these resolutions are reversible equilibrium limited reactions. For the first time, an extensive kinetic model is proposed for kinetic resolution reactions, which takes into account the full reversibility of the reaction, substrate inhibition by an acyl donor and an acyl acceptor as well as alternative substrate inhibition by each enantiomer. For this purpose, the reversible enantioselective transesterification of (R/S)-1-methoxy-2-propanol with ethyl acetate catalyzed by Candida antarctica lipase B (CAL-B) is investigated. The detailed model presented here is valid for a wide range of substrate and product concentrations. Following model discrimination and the application of Haldane equations to reduce the degree of freedom in parameter estimation, the 11 free parameters are successfully identified. All parameters are fitted to the complete data set simultaneously. Six types of independent initial rate studies provide a solid data basis for the model. The effect of changes in substrate and product concentration on reaction kinetics is discussed. The developed model is used for simulations to study the behavior of reaction kinetics in a fixed bed reactor. The typical plot of enantiomeric excess versus conversion of substrate and product is evaluated at various initial substrate mixtures. The model is validated by comparison with experimental results obtained with a fixed bed reactor, which is part of a fully automated state-of-the-art miniplant.


Assuntos
Lipase/metabolismo , Modelos Químicos , Propilenoglicóis/isolamento & purificação , Enzimas Imobilizadas/química , Cinética , Estereoisomerismo
2.
J Biotechnol ; 121(2): 213-26, 2006 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-16122827

RESUMO

The Candida antarctica lipase B catalyzed kinetic resolution of (R/S)-1-methoxy-2-propyl-acetate was studied as a model system for the biocatalytic production of chiral secondary alcohols. For this purpose, a kinetic model is proposed involving both enantiomers of this reaction using model discrimination and parameter identification. Starting from a ping-pong bi-bi mechanism, a simplified model with sensitive parameters was derived for the R- and S-enantiomer, respectively. It was validated at pH 7.0, using time-course measurements at varying temperatures (30-60 degrees C) and initial substrate conditions (0.05-1.5 M). This model was then used for mechanistic interpretation of the kinetic resolution on a biochemical level. The effect of temperature on kinetic parameters and enantiomeric ratio was investigated and compared to findings from the field of molecular modeling to obtain a better understanding of the reaction system for process design. Values of 21.2 and 9.7 kJmol-1 were determined for the enthalpic (DeltaR-S DeltaH ++ degrees) and the entropic (-T x DeltaR-S DeltaS ++ degrees) contribution of the difference in transition state energy of both enantiomers at 30 degrees C. High enantiomeric ratio's (E of 47-110) especially at lower temperatures, in addition to enzyme activity at a wide pH range, indicate this biotransformation is a promising example for the industrial production of chiral secondary alcohols.


Assuntos
Lipase/química , Modelos Químicos , Propilenoglicóis/química , Proteínas Fúngicas , Hidrólise , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA