Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38864863

RESUMO

Menaquinone-7 (MK-7), a vital vitamin with numerous health benefits, is synthesized and secreted extracellularly by the formation of biofilm, dominantly in Bacillus strains. Our team developed an innovative biofilm reactor utilizing Bacillus subtilis natto cells to foster biofilm growth on plastic composite supports to produce MK-7. Continuous fermentation in biofilm reactors offers a promising strategy for achieving sustainable and efficient production of Menaquinone-7 (MK-7). Unlike conventional batch fermentation, continuous biofilm reactors maintain a steady state of operation, which reduces resource consumption and waste generation, contributing to sustainability. By optimizing fermentation conditions, MK-7 production was significantly enhanced in this study, demonstrating the potential for sustainable industrial-scale production. To determine the optimal operational parameters, various dilution rates were tested. These rates were selected based on their potential to enhance nutrient supply and biofilm stability, thereby improving MK-7 production. By carefully considering the fermentation conditions and systematically varying the dilution rates, MK-7 production was significantly enhanced during continuous fermentation. The MK-7 productivity was found to increase from 0.12 mg/L/h to 0.33 mg/L/h with a dilution rate increment from 0.007 to 0.042 h-1). This range was chosen to explore the impact of various nutrient supply rates on MK-7 production and to identify the optimal conditions for maximizing productivity. However, a further increase in the dilution rate to 0.084 h-1 led to reduced productivity at approximately 0.16 mg/L/h, likely due to insufficient retention time for effective biofilm formation. Consequently, a dilution rate of 0.042 h-1 exhibited the highest productivity of 0.33 mg/L/h, outperforming all investigated dilution rates and demonstrating the critical balance between nutrient supply and retention time in continuous fermentation. These findings validate the feasibility of operating continuous fermentation at a 0.084 h-1 dilution rate, corresponding to a 48 h retention time, to achieve the highest MK-7 productivity compared to conventional batch fermentation. The significant advancements achieved in enhancing Menaquinone-7 (MK-7) productivity through continuous fermentation at optimal dilution rates in the present work indicate promising prospects for even greater efficiency and sustainability in MK-7 production through future developments.

2.
Mol Biotechnol ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957480

RESUMO

The synergistic effects of antimicrobial nanostructures with antibiotics present a promising solution for overcoming resistance in methicillin-resistant Staphylococcus aureus (MRSA). Previous studies have introduced iron as a novel coating for silver nanoparticles (AgNPs) to enhance both economic efficiency and potency against S. aureus. However, there are currently no available data on the potential of these novel nanostructures to reverse MRSA resistance. To address this gap, a population study was conducted within the MRSA community, collecting a total of 48 S. aureus isolates from skin lesions. Among these, 21 isolates (43.75%) exhibited cefoxitin resistance as determined by agar disk diffusion assay. Subsequently, a PCR test confirmed the presence of the mecA gene in 20 isolates, verifying them as MRSA. These results highlight the cefoxitin disk diffusion susceptibility test as an accurate screening method for predicting mecA-mediated resistance in MRSA. Synergy tests were performed on cefoxitin, serving as a marker antibiotic, and iron-coated AgNPs (Fe@AgNPs) in a combination study using the checkerboard assay. The average minimal inhibitory concentration (MIC) and fractional inhibitory concentration (FIC) of cefoxitin were calculated as 11.55 mg/mL and 3.61 mg/mL, respectively. The findings indicated a synergistic effect (FIC index < 0.5) between Fe@AgNPs and cefoxitin against 90% of MRSA infections, while an additive effect (0.5 ≤ FIC index ≤ 1) could be expected in 10% of infections. These results suggest that Fe@AgNPs could serve as an economically viable candidate for co-administration with antibiotics to reverse resistance in MRSA infections within skin lesions. Such findings may pave the way for the development of future treatment strategies against MRSA infections.

3.
Mol Biotechnol ; 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37517081

RESUMO

The K family of vitamins includes a collection of molecules with different pharmacokinetic characteristics. Menaquinone-7 (MK-7) has the finest properties and is the most therapeutically beneficial due to its long plasma half-life and outstanding extrahepatic bioavailability. MK-7 exhibits cis-trans isomerism, and merely the all-trans form is biologically efficacious. Therefore, the remedial value of MK-7 end products is exclusively governed by the quantity of all-trans MK-7. Consumers favour fermentation for the production of MK-7; however, it involves several challenges. The low MK-7 yield and extensive downstream processing requirements increase production costs, resulting in an expensive final product that is not universally available. Bacterial cell immobilisation with iron oxide nanoparticles (IONs) can potentially address the limitations of MK-7 fermentation. Uncoated IONs tend to have low stability and can adversely affect cell viability; thus, amine-functionalised IONs, owing to their increased physicochemical stability and biocompatibility, are a favourable alternative. Nonetheless, employing biocompatible IONs for this purpose is only advantageous if the bioactive MK-7 isomer is obtained in the most significant fraction, exploring which formed the aim of this investigation. Two amine-functionalised IONs, namely 3-aminopropyltriethoxysilane (APTES)-coated IONs (IONs@APTES) and L-Lysine (L-Lys)-coated IONs (L-Lys@IONs), were synthesised and characterised, and their impact on various parameters was evaluated. IONs@APTES were superior, and the optimal concentration (300 [Formula: see text]g/mL) increased all-trans MK-7 production and improved its yield relative to the untreated cells by 2.3- and 3.1-fold, respectively. The outcomes of this study present an opportunity to develop an innovative and effective fermentation method that enhances the production of bioactive MK-7.

4.
Nanomaterials (Basel) ; 13(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37368255

RESUMO

Menaquinone-7 (MK-7) is the most therapeutically valuable K vitamin owing to its excellent bioavailability. MK-7 occurs as geometric isomers, and only all-trans MK-7 is bioactive. The fermentation-based synthesis of MK-7 entails various challenges, primarily the low fermentation yield and numerous downstream processing steps. This raises the cost of production and translates to an expensive final product that is not widely accessible. Iron oxide nanoparticles (IONPs) can potentially overcome these obstacles due to their ability to enhance fermentation productivity and enable process intensification. Nevertheless, utilisation of IONPs in this regard is only beneficial if the biologically active isomer is achieved in the greatest proportion, the investigation of which constituted the objective of this study. IONPs (Fe3O4) with an average size of 11 nm were synthesised and characterised using different analytical techniques, and their effect on isomer production and bacterial growth was assessed. The optimum IONP concentration (300 µg/mL) improved the process output and resulted in a 1.6-fold increase in the all-trans isomer yield compared to the control. This investigation was the first to evaluate the role of IONPs in the synthesis of MK-7 isomers, and its outcomes will assist the development of an efficient fermentation system that favours the production of bioactive MK-7.

5.
Mol Biotechnol ; 65(10): 1704-1714, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36757629

RESUMO

Iron coating was introduced as one of the novel techniques to improve physicochemical and biological properties of silver nanoparticles (AgNPs). In the current experiment, impact of iron coating on the antimicrobial potency of AgNPs was investigated against methicillin-resistance Staphylococcus aureus (MRSA). To obtain more accurate data about the antimicrobial potency of examined nanostructures, the experiment was done on the 10 isolates of MRSA which were isolated from skin lesions. AgNPs and iron-coated AgNPs (Fe@AgNPs) were fabricated based on a green one-pot reaction procedure. Minimal inhibitory concentration (MIC) of Fe@AgNPs was not significantly different with MIC of AgNPs against eight out of 10 examined MRSA isolates. Also, by iron coating a reduction in the minimal inhibitory concentration (MIC) of AgNPs was observed against two MRSA isolates. The average MIC of AgNPs against 10 MRSA isolates was calculated to be 2.16 ± 0.382 mg/mL and this value was reduced to 1.70 ± 0.638 mg/mL for Fe@AgNPs. However, this difference was not considered significant statistically (P-value > 0.05). From productivity point of view, it was found that iron coating would improve the productivity of the synthesis reaction more than fivefold. Productivity of AgNPs was calculated to be 1.02 ± 0.07 g/L, meanwhile this value was 5.25 ± 0.05 g/L for Fe@AgNPs. Iron coating may provide another economic benefit to reduce final price of AgNPs. It is obvious that the price of a particular nanostructure made of silver and iron is significantly lower than that of pure silver. These findings can be considered for the fabrication of economic and potent antimicrobial nanoparticles.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus , Prata/farmacologia , Prata/química , Meticilina , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana
6.
Comput Math Methods Med ; 2022: 1089722, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36411793

RESUMO

ADAM33 is a zinc-dependent metalloprotease of the ADAM family, which plays a vital biological role as an activator of Th2 cytokines and growth factors. Moreover, this protein is crucial for the normal development of the lung in the fetus two months after gestation leading to determining lung functions all over life. In this regard, mutations in ADAM33 have been linked with asthma risk factors. Consequently, identifying ADAM33 pathogenic nonsynonymous single-nucleotide polymorphisms (nsSNPs) can be very important in asthma treatment. In the present study, 1055 nsSNPs of human ADAM33 were analyzed using biocomputational software, 31 of which were found to be detrimental mutations. Precise structural and stability analysis revealed D219V, C669G, and C606S as the most destabilizing SNPs. Furthermore, MD simulations disclosed higher overall fluctuation and alteration in intramolecular interactions compared with the wild-type structure. Overall, the results suggest D219V, C669G, and C606S detrimental mutations as a starting point for further case-control studies on the ADAM33 protein as well as an essential source for future targeted mechanisms.


Assuntos
Asma , Polimorfismo de Nucleotídeo Único , Humanos , Predisposição Genética para Doença , Proteínas ADAM/genética , Asma/genética , Estudos de Casos e Controles
7.
Environ Res ; 215(Pt 1): 114120, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36029837

RESUMO

Cytotoxicity in freshwater fishes induced by industrial effluents and dyes is a global issue. Trypan blue dye has many applications in different sectors, including laboratories and industries. This study determines to detect the cytotoxic effects of trypan blue dye in vivo. The objective of this study was to estimate the sub-lethal effects of azodye in fish. Cirrhinus mrigala, a freshwater fish, was exposed to three different grading concentrations of dye 5 mg/L, 10 mg/L, and 20 mg/L in a glass aquarium. Significant (p < 0.05) decrease in the weight of fish was observed as 0.728 ± 0.14 g and 2.232 ± 0.24 g, respectively, in the trial groups exposed to 10 and 20 mg/L of dye in a week. After exposure to trypan blue dye, fishes were dissected to remove liver and kidney tissues. Histopathological assessments determined hepatotoxicity and nephrotoxicity induced by trypan blue through the paraffin wax method. This dye induces mild alterations in the liver such as congestion, hemolysis, dilated sinusoids, ruptured hepatocytes, vacuolization, edema of hepatocytes, necrosis, degeneration, aggregation, and inflammation. This dye not only alters liver tissue, also induces an acute level of tissue alterations in the kidneys, such as degeneration of epithelial cells of renal tubules, shrinkage of the glomerulus, congestion, reduced lumen, degeneration of glomerulus, absence of space of bowmen, glomerulonephritis, necrosis in hematopoietic interstitial tissues and glomerulus, reduced lumen, vacuolar degeneration of renal tubules, increased per tubular space. The current study concludes that trypan blue dye released even in small amounts is found to be associated with a high incidence of cytotoxicity. Such tissue alterations in this species could be used as biomarkers for azo dyes.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Cyprinidae , Animais , Compostos Azo/toxicidade , Biomarcadores , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Corantes/toxicidade , Necrose , Parafina , Azul Tripano/toxicidade
8.
Bioprocess Biosyst Eng ; 45(8): 1371-1390, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35864383

RESUMO

Menaquinone-7 (MK-7) offers significant health benefits; however, only the all-trans form is biologically active. MK-7 produced through fermentation can occur as all-trans and cis isomers, and the therapeutic value of the resulting MK-7 is exclusively determined by the quantity of the all-trans isomer. Therefore, this study aimed to investigate the effect of the media composition on the isomer profile obtained from fermentation and determine the optimum media combination to increase the concentration of the all-trans isomer and diminish the production of cis MK-7. For this purpose, design of experiments (DOE) was used to screen the most effective nutrients, and a central composite face-centred design (CCF) was employed to optimise the media components. The optimum media consisted of 1% (w/v) glucose, 2% (w/v) yeast extract, 2% (w/v) soy peptone, 2% (w/v) tryptone, and 0.1% (w/v) CaCl2. This composition resulted in an average all-trans and cis isomer concentration of 36.366 mg/L and 1.225 mg/L, respectively. In addition, the optimised media enabled an all-trans isomer concentration 12.2-fold greater and a cis isomer concentration 2.9-fold less than the unoptimised media. This study was the first to consider the development of an optimised fermentation media to enhance the production of the bioactive isomer of MK-7 and minimise the concentration of the inactive isomer. Furthermore, this media is commercially promising, as it will improve the process productivity and reduce the costs associated with the industrial fermentation of the vitamin.


Assuntos
Glucose , Vitaminas , Fermentação , Vitamina K 2/análogos & derivados
9.
Food Chem Toxicol ; 165: 113077, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35489468

RESUMO

Herbal nanoparticles (HNPs) were introduced as a novel generation of antimicrobial nanoparticles. But in the battle against superbugs we need nanostructures with boosted antimicrobial potency. So in the current experiment, for the first time a green approach was developed for the silver functionalization of HNPs which were fabricated from an antimicrobial herb Thymus vulgaris. Silver functionalized HNPs (AgHNPs) were found to be mesoporous and were further fortified with antimicrobial compounds. The resulted structures were re-tested against MRSA and P. aeruginosa as superbugs. It was found that silver functionalization can provide eight-fold increase in the antimicrobial potency of HNPs. Moreover, MIC was reduced from 20 mg/mL to 2.5 mg/mL. Another eight-fold reduction in the MIC (0.3 mg/mL) was achieved by fortification with antimicrobial compounds. So, the antimicrobial potency of HNPs was successfully increase approximately up to 64-folds. Obtained results illustrated that silver functionalization and fortification with antimicrobial compounds can be considered as effective approaches to achieve HNPs with boosted antimicrobial potency. These nanostructures have the potency to be loaded with other antimicrobial compound such as antibiotics toward synergistic effects of AgNPs and antibiotics. Resulted nanostructures can be employed in the formulation of powerful topical and surface disinfectants against superbugs. Also, these particles can be considered as a next generation of boosted antimicrobial nanostructures.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanoestruturas , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Prata/química , Prata/farmacologia
10.
Mol Biotechnol ; 64(6): 702-710, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35099707

RESUMO

Despite iron-based nanoparticles gaining huge attraction in various field of sciences and technology, their application rises ecological concerns due to lack of studies on their interaction with microbial cells populations and communities, such as biofilms. In this study, Chlorella vulgaris cells were employed as a model of aquatic microalgae to investigate the impacts of L-lysine-coated iron oxide nanoparticles (lys@IONPs) on microalgal growth and biofilm formation. In this regard, C. vulgaris cells were exposed to different concentrations of lys@IONPs and the growth of cells was evaluated by OD600 and biofilm formation was analyzed using crystal violet staining throughout 12 days. It was revealed that low concentration of nanoparticles (< 400 µg/mL) can promote cell growth and biofilm formation. However, higher concentrations have an adverse effect on microalgal communities. It is interesting that microalgal growth and biofilm are concentration- and exposure time-dependent to lys@IONPs. Over long period (~ 12 days) exposure to high concentrations of nanoparticles, cells can adapt with the condition, so growth was raised and biofilm started to develop. Results of the present study could be considered in ecological issues and also bioprocesses using microalgal cells.


Assuntos
Chlorella vulgaris , Microalgas , Nanopartículas , Biofilmes , Lisina , Nanopartículas Magnéticas de Óxido de Ferro , Nanopartículas/química
11.
Mol Biotechnol ; 64(3): 320-329, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34647242

RESUMO

Downstream processing is an expensive step for industrial production of recombinant proteins. Cell immobilization is known as one of the ideal solutions in regard to process intensification. In recent years, magnetic immobilization was introduced as a new technique for cell immobilization. This technique was successfully employed to harvest many bacterial and eukaryotic cells. But there are no data about the influence of magnetic immobilization on the eukaryotic inducted recombinant cells. In this study, impacts of magnetic immobilization on the growth and metabolic status of induced recombinant Pichia pastoris as a valuable eukaryotic model cells were investigated. Results based on colony-forming unit, OD600, and trypan blue assay indicated that magnetic immobilization had no adverse effect on the growth and viability of P. pastoris cells. Also, about 20-40% increase in metabolic activity was recorded in immobilized cells that were decorated with 0.5-2 mg/mL nanoparticles. Total protein and carbohydrate of the cells were also measured as main indicatives for cell function and no significant changes were observed in the immobilized cells. Current data show magnetic immobilization as a biocompatible technique for application in eukaryotic expression systems. Results can be considered for further developments in P. pastoris-based expression systems.


Assuntos
Nanopartículas de Magnetita/química , Técnicas Microbiológicas/métodos , Pichia/crescimento & desenvolvimento , Fenômenos Magnéticos , Viabilidade Microbiana , Pichia/genética , Recombinação Genética
12.
Biol Trace Elem Res ; 200(5): 2174-2182, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34392478

RESUMO

The possibility of employing FeOOH nano-ellipsoids as a novel shape nano-based iron supplement was investigated. Ferrous sulfate and nano-ellipsoids were daily administered by gavage at low and high dosages. After 1 month of treatment, the hematologic parameters along with serum and organs' iron contents were measured. Liver enzymes, total serum bilirubin, and LDH level were assayed to evaluate any possible toxicity. More investigation was also performed by organ index calculation and also pathologic studies. It was found that nano-ellipsoids are an effective iron supplement to improve iron-related blood parameters. Interestingly, low-dose nano-ellipsoids were even more effective than high-dose ferrous sulfate. Nano-ellipsoids had no considerable impact on the liver enzymes and serum bilirubin. Meanwhile, high-dose ferrous sulfate significantly increases liver enzyme activity. The increased serum LDH was also the only concern in the groups that were treated with high-dose ferrous sulfate and nano-ellipsoids. Pathologic evaluations revealed some signs of liver inflammation after supplementation with high dose nano-ellipsoids and also ferrous sulfate. Overall, these data indicate FeOOH nano-ellipsoids as a novel shape iron supplement to be employed at low dosage but with greater beneficial effects than high-dose ferrous sulfate.


Assuntos
Anemia Ferropriva , Bilirrubina , Suplementos Nutricionais , Compostos Ferrosos , Humanos , Ferro/uso terapêutico , Fígado
13.
Environ Res ; 204(Pt B): 112133, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34599898

RESUMO

Plant-based functional lipid ingredients, such as essential oils, with antioxidant and antibacterial activities, have gained substantial attention in food, cosmetic, and pharmaceutical formulations due to the increasing disquiet about the risks of artificial preservatives. However, similar to other lipid-based bioactives, their application in water-based products is challenging owing to their low water solubility and high chemical instability, especially during exposure to light, heat, moisture, and oxygen. Hence, the incorporation of essential oils into water-dispersible nanoemulsion systems can effectively address these issues. Moreover, combining various essential oils can synergistically enhance their chemical and biological properties. Consequently, the objective of this study was to develop different composite nanoemulsion systems using ginger, cinnamon, and cardamom essential oils, which were considered individually and in binary and ternary combinations. Empirical models to predict the response characteristics based on the proportions of oil phase components were also derived. The numerical multi-goal optimisation analysis suggested that 10 % ginger, 68 % cinnamon, and 22 % cardamom essential oil is the ideal oil phase combination to achieve nanoemulsions with the smallest average particle size and size distribution and the highest zeta potential and antioxidant and antibacterial activity.


Assuntos
Elettaria , Óleos Voláteis , Zingiber officinale , Cinnamomum zeylanicum , Emulsões , Conservantes de Alimentos
14.
Molecules ; 26(10)2021 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-34065753

RESUMO

The lignocellulosic biomass is comprised of three major components: cellulose, hemicellulose, and lignin. Among these three, cellulose and hemicellulose were already used for the generation of simple sugars and subsequent value-added products. However, lignin is the least applied material in this regard because of its complex and highly variable nature. Regardless, lignin is the most abundant material, and it can be used to produce value-added products such as lignin-modifying enzymes (LMEs), polyhydroxyalkanoates (PHAs), microbial lipids, vanillin, muconic acid, and many others. This review explores the potential of lignin as the microbial substrate to produce such products. A special focus was given to the different types of lignin and how each one can be used in different microbial and biochemical pathways to produce intermediate products, which can then be used as the value-added products or base to make other products. This review paper will summarize the effectiveness of lignin as a microbial substrate to produce value-added products through microbial fermentations. First, basic structures of lignin along with its types and chemistry are discussed. The subsequent sections highlight LMEs and how such enzymes can enhance the value of lignin by microbial degradation. A major focus was also given to the value-added products that can be produced from lignin.


Assuntos
Enzimas/metabolismo , Fungos/crescimento & desenvolvimento , Lignina/química , Biotransformação , Meios de Cultura/química , Fermentação , Proteínas Fúngicas/metabolismo , Fungos/metabolismo
15.
Recent Pat Biotechnol ; 15(2): 112-136, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-33874878

RESUMO

BACKGROUND: Viral respiratory infections could result in perturbation of the gut microbiota due to a probable cross-talk between lungs and gut microbiota. This can affect pulmonary health and the gastrointestinal system. OBJECTIVE: This review aimed to discuss the impact of probiotics/prebiotics and supplements on the prevention and treatment of respiratory infections, especially emerging pathogens. METHODS: The data were searched in PubMed, Scopus, Google Scholar, Google Patents, and The Lens-Patent using keywords of probiotics and viral respiratory infections in the title, abstract, and keywords. RESULTS: Probiotics consumption could decrease the susceptibility to viral respiratory infections, such as COVID-19 and simultaneously enhance vaccine efficiency in infectious disease prevention through the immune system enhancement. Probiotics improve the gut microbiota and the immune system via regulating the innate system response and production of anti-inflammatory cytokines. Moreover, treatment with probiotics contributes to intestinal homeostasis restitution under antibiotic pressure and decreasing the risk of secondary infections due to viral respiratory infections. Probiotics present varied performances in different conditions; thus, promoting their efficacy through combining with supplements (prebiotics, postbiotics, nutraceuticals, berberine, curcumin, lactoferrin, minerals, and vitamins) is important. Several supplements reported to enhance the probiotics' efficacy and their mechanisms as well as probiotics- related patents are summarized in this review. Using nanotechnology and microencapsulation techniques can also improve probiotics' efficiency. CONCLUSION: Given the global challenge of COVID-19, probiotic/prebiotic and following nutritional guidelines should be regarded seriously. Additionally, their role as an adjuvant in vaccination for immune response augmentation needs attention.


Assuntos
Prebióticos , Probióticos , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/prevenção & controle , Adjuvantes Imunológicos , COVID-19/imunologia , COVID-19/microbiologia , COVID-19/prevenção & controle , Suplementos Nutricionais , Microbioma Gastrointestinal , Humanos , Infecções Respiratórias/imunologia , Infecções Respiratórias/microbiologia , SARS-CoV-2 , Tratamento Farmacológico da COVID-19
16.
Langmuir ; 37(1): 115-123, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33346669

RESUMO

Various studies were performed to fabricate self-assembling nanoobjects out of noble metals, but a few efforts were made for engineering iron-based nanorods toward sell-assembling blocks. In this regard ß-FeOOH nanorods were fabricated in various sizes to achieve iron-based rod nanoblocks with self-assembling potential. Hydrolysis of ferric ions in various concentrations was successfully developed as a novel approach to control the growth of ß-FeOOH crystals and tuning the length of rods in the nano range, below 100 nm. It was found that the concentration of ferric ion has no effect on the widths of nanorods, but the length was affected. By increasing the concentration of ferric ions, an increase in the length of nanorods and an increase of aspect ratio occurred. All sizes of the resulting FeOOH nanorods exhibited mesoporous feature, but interestingly the hysteresis loops were different due to different pore patterns. In fact, pores on the larger particles were more uniform in size and shape. Nanorods of small length did not make suitable interactions toward ordered phase formation, but rods with the mean length of about 90 nm or longer, at a certain concentration, were able to form nematic phases. The large (∼+40 mV) zeta-potential of nanorods prevents formation of dense arrays, and just bundle-like structures were observed. These findings highlight the importance of size, surface charge, and concentration of nanoobjects in the formation of 3D structures. The developed technique in the fabrication of ß-FeOOH nanorods provides pure structures that are free from any size-controlling agent. These pure structures are suitable for further functionalization or coating. Self-assembling nanoobjects is a developing field in nanotechnology, and therefore studies can help our understanding over the assembling process.

17.
Materials (Basel) ; 15(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35009222

RESUMO

Conventionally, in a linear economy, C&D (Construction and Demolition) waste was considered as zero value materials, and, as a result of that, most C&D waste materials ended up in landfills. In recent years, with the increase in the awareness around sustainability and resource management, various countries have started to explore new models to minimize the use of limited resources which are currently overused, mismanaged, or quickly depleting. In this regard, the implementation of CE (Circular Economy) has emerged as a potential model to minimize the negative impact of C&D wastes on the environment. However, there are some challenges hindering a full transition to CE in the construction and demolition sectors. Therefore, this review paper aims to critically scrutinize different aspects of C&D waste and how CE can be integrated into construction projects. Reviewing of the literature revealed that the barriers in the implementation of CE in C&D waste sectors fall in five main domains, namely legal, technical, social, behavioral, and economic aspects. In this context, it was found that policy and governance, permits and specifications, technological limitation, quality and performance, knowledge and information, and, finally, the costs associated with the implementation of CE model at the early stage are the main barriers. In addition to these, from the contractors' perspective, C&D waste dismantling, segregation, and on-site sorting, transportation, and local recovery processes are the main challenges at the start point for small-scale companies. To address the abovementioned challenges, and also to minimize the ambiguity of resulting outcomes by implementing CE in C&D waste sectors, there is an urgent need to introduce a global framework and a practicable pathway to allow companies to implement such models, regardless of their scale and location. Additionally, in this paper, recommendations on the direction for areas of future studies for a reduction in the environmental impacts have been provided. To structure an effective model approach, the future direction should be more focused on dismantling practices, hazardous material handling, quality control on waste acceptance, and material recovery processes, as well as a incentivization mechanism to promote ecological, economic, and social benefits of the CE for C&D sectors.

18.
Mol Biotechnol ; 63(1): 80-89, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33165735

RESUMO

Pichia pastoris expression system was introduced with post-translation process similar to higher eukaryotes. Preliminary studies were performed toward process intensification and magnetic immobilization of this system. In this experiment, effects of magnetic immobilization on the structure of recombinant protein were evaluated. P. pastoris cell which express human serum albumin (HSA) was used as a model. The cells were immobilized with various concentrations of APTES coated magnetite nanoparticles. HSA production was done over 5 days induction and structure of the product was analyzed by UV-vis, fluorescence, and ATR-FTIR spectroscopy. Second derivative deconvolution method was used to analyze the secondary structure of HSA. P. pastoris cell that were immobilized with 0.5 and 1 mg/mL of nanoparticles were produced HSA with intact structure. But immobilization with 2 mg/mL of nanoparticles resulted in some modifications in the secondary structures (i.e., α-helixes and ß-turns) of produced HSA. Based on these data, immobilization of P. pastoris cells with 0.5 or 1 mg/mL of nanoparticles is completely efficient for cell harvesting and has any effect on the structure of recombinant product. These findings revealed that decoration of microbial cells with high concentrations of nanoparticles has some impacts on the structure of secretory proteins.


Assuntos
Nanopartículas de Magnetita/química , Saccharomycetales/metabolismo , Albumina Sérica Humana/química , Nanopartículas de Magnetita/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Propilaminas/química , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Estrutura Secundária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Albumina Sérica Humana/genética , Albumina Sérica Humana/metabolismo , Silanos/química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Bioprocess Biosyst Eng ; 44(1): 39-45, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32734358

RESUMO

Probiotics, in particular, lactic acid bacteria (LAB) are widely used as starter cultures in food and pharmaceutical industries. Presence of LAB supports the production and preservation of a diverse range of food products, provides a positive effect on the human gastrointestinal tract, and prevents the progression of many diseases. However, the main limiting factor in the application of LAB is that they hardly survive in acidic conditions, including the human digestive system. This factor inhibits LAB to maintain their functionality and deliver their health benefits to the host. For this purpose, magnetic immobilisation of LAB with iron oxide nanoparticles (IONs) was conducted to evaluate the effect of IONs on bacterial growth and their viability at low pH. Gram-positive Lactobacillus acidophilus, a well-known species of LAB, was selected for this study. The IONs were successfully synthesised with the average size of 7 nm and used for decoration of L. acidophilus cells at low pH. Based on the results, a 1.8-fold increase in bacterial viability was observed by decorating cells with 360 µg/mL IONs.


Assuntos
Lactobacillus acidophilus/crescimento & desenvolvimento , Nanopartículas Magnéticas de Óxido de Ferro/química , Concentração de Íons de Hidrogênio , Viabilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...