Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heredity (Edinb) ; 130(5): 329-334, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36941410

RESUMO

Sexual selection on fitness-determining traits should theoretically erode genetic variance and lead to low heritability. However, many sexually selected traits maintain significant phenotypic and additive genetic variance, with explanations for this "lek paradox" including genic capture due to condition-dependence, and breaks on directional selection due to environmental sources of variance including maternal effects. Here we investigate genetic and environmental sources of variance in the intrasexually selected green badge of the sand lizard (Lacerta agilis). The badge functions as a cue to male fighting ability in this species, and male-male interactions determine mate acquisition. Using animal models on a pedigree including three generations of males measured over an extensive 9-year field study, we partition phenotypic variance in both badge size and body condition into additive genetic, maternal, and permanent environmental effects experienced by an individual over its lifespan. Heritability of badge size was 0.33 with a significant estimate of underlying additive genetic variance. Body condition was strongly environmentally determined in this species and did not show either significant additive genetic variance or heritability. Neither badge size nor body condition was responsive to maternal effects. We propose that the lack of additive genetic variance and heritability of body condition makes it unlikely that genic capture mechanisms maintain additive genetic variance for badge size. That said, genic capture was originally proposed for male traits under female choice, not agonistic selection. If developmental pathways generating variance in body condition, and/or the covarying secondary sex trait, differ between inter- and intrasexual selection, or the rate at which their additive genetic variance or covariance is depleted, future work may show whether genic capture is largely restricted to intersexual selection processes.


Assuntos
Lagartos , Comportamento Sexual Animal , Animais , Masculino , Feminino , Reprodução , Lagartos/genética , Variação Genética
2.
Ecol Evol ; 13(3): e9934, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36993149

RESUMO

The harmful effects of close inbreeding have been recognized for centuries and, with the rise of Mendelian genetics, was realized to be an effect of homozygosis. This historical background led to great interest in ways to quantify inbreeding, its depression effects on the phenotype and flow-on effects on mate choice and other aspects of behavioral ecology. The mechanisms and cues used to avoid inbreeding are varied and include major histocompatibility complex (MHC) molecules and the peptides they transport as predictors of the degree of genetic relatedness. Here, we revisit and complement data from a Swedish population of sand lizards (Lacerta agilis) showing signs of inbreeding depression to assess the effects of genetic relatedness on pair formation in the wild. Parental pairs were less similar at the MHC than expected under random mating but mated at random with respect to microsatellite relatedness. MHC clustered in groups of RFLP bands but no partner preference was observed with respect to partner MHC cluster genotype. Male MHC band patterns were unrelated to their fertilization success in clutches selected for analysis on the basis of showing mixed paternity. Thus, our data suggest that MHC plays a role in pre-copulatory, but not post-copulatory partner association, suggesting that MHC is not the driver of fertilization bias and gamete recognition in sand lizards.

3.
J Hered ; 114(2): 143-151, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36715308

RESUMO

Animal color signals may function as indicators of fighting ability when males compete for access to females. This allows opponents to settle aggressive interactions before they escalate into physical combat and injury. Thus, there may be strong directional selection on these traits, toward enhanced signal quality. This renders sexually selected traits particularly susceptible to inbreeding depression, due to relatively low ratios of additive genetic variance to dominance variance. We measured the effects of inbreeding on an intrasexually selected color signal (the badge) in a population of Swedish sand lizards (Lacerta agilis) using the Rhh software based on 17 to 21 microsatellites. Males of this sexually dichromatic species use the badge during aggressive interactions to display, and assess, fighting ability. We found negative effects of homozygosity on badge size, saturation, and brightness. However, no such effects were observed on color hue. Pairwise correlations between badge size, hue, and saturation were all statistically significant. Thus, the sand lizard "badge" is a multicomponent signal with variation explained by covariation in badge size, saturation, and color hue. Body mass corrected for skeletal size (body condition) positively predicted badge size and saturation, encouraging future research on the extent that sexual signals may convey information on multigene targets (i.e. "genic capture").


Assuntos
Endogamia , Lagartos , Animais , Masculino , Feminino , Comportamento Sexual Animal , Lagartos/genética
4.
Mol Ecol ; 31(24): 6605-6616, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36208022

RESUMO

Telomeres are nucleotide-protein caps, predominantly at the ends of Metazoan linear chromosomes, showing complex dynamics with regard to their lengthening and shortening through life. Their complexity has entertained the idea that net telomere length and attrition could be valuable biomarkers of phenotypic and genetic quality of their bearer. Intuitively, those individuals could be more heterozygous and, hence, less inbred. However, some inbred taxa have longer, not shorter, telomeres. To understand the role of inbreeding in this complex scenario we need large samples across a range of genotypes with known maternity and paternity in telomere-screened organisms under natural conditions. We assessed the effects of parental and hatchling inbreeding on telomere length in >1300 offspring from >500 sires and dams in a population of sand lizards (Lacerta agilis). Maternal and paternal ID and their interactions predict hatchling telomere length at substantial effect sizes (R2  > .50). Deviation from mean maternal heterozygosity statistically predicts shorter offspring telomeres but this only when sibship is controlled for by paternal ID, and then is still limited (R2  = .06). Raw maternal heterozygosity scores, ignoring absolute deviation from the mean, explained 0.07% of the variance in hatchling telomere length. In conclusion, inbreeding is not a driver of telomere dynamics in the sand lizard (Lacerta agilis) study system.


Assuntos
Endogamia , Lagartos , Gravidez , Animais , Feminino , Humanos , Lagartos/genética , Telômero/genética , Encurtamento do Telômero , Genótipo
5.
PeerJ ; 7: e7988, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31720113

RESUMO

In recent years, the field of sexual selection has exploded, with advances in theoretical and empirical research complementing each other in exciting ways. This perspective piece is the product of a "stock-taking" workshop on sexual selection and sexual conflict. Our aim is to identify and deliberate on outstanding questions and to stimulate discussion rather than provide a comprehensive overview of the entire field. These questions are organized into four thematic sections we deem essential to the field. First we focus on the evolution of mate choice and mating systems. Variation in mate quality can generate both competition and choice in the opposite sex, with implications for the evolution of mating systems. Limitations on mate choice may dictate the importance of direct vs. indirect benefits in mating decisions and consequently, mating systems, especially with regard to polyandry. Second, we focus on how sender and receiver mechanisms shape signal design. Mediation of honest signal content likely depends on integration of temporally variable social and physiological costs that are challenging to measure. We view the neuroethology of sensory and cognitive receiver biases as the main key to signal form and the 'aesthetic sense' proposed by Darwin. Since a receiver bias is sufficient to both initiate and drive ornament or armament exaggeration, without a genetically correlated or even coevolving receiver, this may be the appropriate 'null model' of sexual selection. Thirdly, we focus on the genetic architecture of sexually selected traits. Despite advances in modern molecular techniques, the number and identity of genes underlying performance, display and secondary sexual traits remains largely unknown. In-depth investigations into the genetic basis of sexual dimorphism in the context of long-term field studies will reveal constraints and trajectories of sexually selected trait evolution. Finally, we focus on sexual selection and conflict as drivers of speciation. Population divergence and speciation are often influenced by an interplay between sexual and natural selection. The extent to which sexual selection promotes or counteracts population divergence may vary depending on the genetic architecture of traits as well as the covariance between mating competition and local adaptation. Additionally, post-copulatory processes, such as selection against heterospecific sperm, may influence the importance of sexual selection in speciation. We propose that efforts to resolve these four themes can catalyze conceptual progress in the field of sexual selection, and we offer potential avenues of research to advance this progress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...