Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Stem Cell ; 13(1): 117-30, 2013 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-23770079

RESUMO

Early full-term pregnancy is one of the most effective natural protections against breast cancer. To investigate this effect, we have characterized the global gene expression and epigenetic profiles of multiple cell types from normal breast tissue of nulliparous and parous women and carriers of BRCA1 or BRCA2 mutations. We found significant differences in CD44(+) progenitor cells, where the levels of many stem cell-related genes and pathways, including the cell-cycle regulator p27, are lower in parous women without BRCA1/BRCA2 mutations. We also noted a significant reduction in the frequency of CD44(+)p27(+) cells in parous women and showed, using explant cultures, that parity-related signaling pathways play a role in regulating the number of p27(+) cells and their proliferation. Our results suggest that pathways controlling p27(+) mammary epithelial cells and the numbers of these cells relate to breast cancer risk and can be explored for cancer risk assessment and prevention.


Assuntos
Neoplasias da Mama/etiologia , Linhagem da Célula , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Perfilação da Expressão Gênica , Glândulas Mamárias Humanas/citologia , Paridade/genética , Células-Tronco/citologia , Proteína BRCA1/genética , Proteína BRCA2/genética , Biomarcadores/metabolismo , Western Blotting , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p27/genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Citometria de Fluxo , Imunofluorescência , Humanos , Técnicas Imunoenzimáticas , Glândulas Mamárias Humanas/metabolismo , Mutação/genética , Análise de Sequência com Séries de Oligonucleotídeos , Gravidez , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Células-Tronco/metabolismo , Células Estromais/citologia , Células Estromais/metabolismo
2.
Bioinformatics ; 28(12): i172-8, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22689758

RESUMO

MOTIVATION: Shotgun sequence read data derived from xenograft material contains a mixture of reads arising from the host and reads arising from the graft. Classifying the read mixture to separate the two allows for more precise analysis to be performed. RESULTS: We present a technique, with an associated tool Xenome, which performs fast, accurate and specific classification of xenograft-derived sequence read data. We have evaluated it on RNA-Seq data from human, mouse and human-in-mouse xenograft datasets. AVAILABILITY: Xenome is available for non-commercial use from http://www.nicta.com.au/bioinformatics.


Assuntos
Análise de Sequência de RNA/métodos , Transplante Heterólogo/classificação , Algoritmos , Animais , DNA Complementar/genética , Genoma/genética , Humanos , Camundongos , Software
3.
Bioinformatics ; 28(14): 1937-8, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22611131

RESUMO

MOTIVATION: The de novo assembly of short read high-throughput sequencing data poses significant computational challenges. The volume of data is huge; the reads are tiny compared to the underlying sequence, and there are significant numbers of sequencing errors. There are numerous software packages that allow users to assemble short reads, but most are either limited to relatively small genomes (e.g. bacteria) or require large computing infrastructure or employ greedy algorithms and thus often do not yield high-quality results. RESULTS: We have developed Gossamer, an implementation of the de Bruijn approach to assembly that requires close to the theoretical minimum of memory, but still allows efficient processing. Our results show that it is space efficient and produces high-quality assemblies. AVAILABILITY: Gossamer is available for non-commercial use from http://www.genomics.csse.unimelb.edu.au/product-gossamer.php.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Software , Algoritmos , Biologia Computacional/métodos
4.
Artigo em Inglês | MEDLINE | ID: mdl-21576758

RESUMO

Genomic repositories increasingly include individual as well as reference sequences, which tend to share long identical and near-identical strings of nucleotides. However, the sequential processing used by most compression algorithms, and the volumes of data involved, mean that these long-range repetitions are not detected. An order-insensitive, disk-based dictionary construction method can detect this repeated content and use it to compress collections of sequences. We explore a dictionary construction method that improves repeat identification in large DNA data sets. Our adaptation, COMRAD, of an existing disk-based method identifies exact repeated content in collections of sequences with similarities within and across the set of input sequences. COMRAD compresses the data over multiple passes, which is an expensive process, but allows COMRAD to compress large data sets within reasonable time and space. COMRAD allows for random access to individual sequences and subsequences without decompressing the whole data set. COMRAD has no competitor in terms of the size of data sets that it can compress (extending to many hundreds of gigabytes) and, even for smaller data sets, the results are competitive compared to alternatives; as an example, 39 S. cerevisiae genomes compressed to 0.25 bits per base.


Assuntos
Biologia Computacional/métodos , Compressão de Dados/métodos , Bases de Dados Genéticas , Análise de Sequência de DNA/métodos , Algoritmos , DNA Bacteriano , DNA Viral , Humanos , Modelos Genéticos
5.
Genome Res ; 21(10): 1601-15, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21890681

RESUMO

Emerging evidence suggests that poor glycemic control mediates post-translational modifications to the H3 histone tail. We are only beginning to understand the dynamic role of some of the diverse epigenetic changes mediated by hyperglycemia at single loci, yet elevated glucose levels are thought to regulate genome-wide changes, and this still remains poorly understood. In this article we describe genome-wide histone H3K9/K14 hyperacetylation and DNA methylation maps conferred by hyperglycemia in primary human vascular cells. Chromatin immunoprecipitation (ChIP) as well as CpG methylation (CpG) assays, followed by massive parallel sequencing (ChIP-seq and CpG-seq) identified unique hyperacetylation and CpG methylation signatures with proximal and distal patterns of regionalization associative with gene expression. Ingenuity knowledge-based pathway and gene ontology analyses indicate that hyperglycemia significantly affects human vascular chromatin with the transcriptional up-regulation of genes involved in metabolic and cardiovascular disease. We have generated the first installment of a reference collection of hyperglycemia-induced chromatin modifications using robust and reproducible platforms that allow parallel sequencing-by-synthesis of immunopurified content. We uncover that hyperglycemia-mediated induction of genes and pathways associated with endothelial dysfunction occur through modulation of acetylated H3K9/K14 inversely correlated with methyl-CpG content.


Assuntos
Aorta/citologia , Células Endoteliais/metabolismo , Epigênese Genética , Hiperglicemia/genética , Acetilação , Acetiltransferases/metabolismo , Células Cultivadas , Cromossomos Humanos , Ilhas de CpG , Metilação de DNA , Diabetes Mellitus/genética , Angiopatias Diabéticas/genética , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Histonas/metabolismo , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Cultura Primária de Células , Análise de Sequência de DNA , Transcrição Gênica
6.
PLoS Genet ; 7(4): e1001369, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21533021

RESUMO

Differentiation is an epigenetic program that involves the gradual loss of pluripotency and acquisition of cell type-specific features. Understanding these processes requires genome-wide analysis of epigenetic and gene expression profiles, which have been challenging in primary tissue samples due to limited numbers of cells available. Here we describe the application of high-throughput sequencing technology for profiling histone and DNA methylation, as well as gene expression patterns of normal human mammary progenitor-enriched and luminal lineage-committed cells. We observed significant differences in histone H3 lysine 27 tri-methylation (H3K27me3) enrichment and DNA methylation of genes expressed in a cell type-specific manner, suggesting their regulation by epigenetic mechanisms and a dynamic interplay between the two processes that together define developmental potential. The technologies we developed and the epigenetically regulated genes we identified will accelerate the characterization of primary cell epigenomes and the dissection of human mammary epithelial lineage-commitment and luminal differentiation.


Assuntos
Metilação de DNA , Epigênese Genética , Regulação da Expressão Gênica , Histonas/metabolismo , Glândulas Mamárias Humanas/metabolismo , Antígeno CD24/genética , Diferenciação Celular , Cromatina/genética , Perfilação da Expressão Gênica/métodos , Humanos , Receptores de Hialuronatos/genética , Glândulas Mamárias Humanas/citologia , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Fatores de Transcrição/genética
7.
J Comput Biol ; 18(3): 391-400, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21385042

RESUMO

The current methods for the determination of the statistical significance of peaks and regions in next generation sequencing (NGS) data require an explicit normalization step to compensate for (global or local) imbalances in the sizes of sequenced and mapped libraries. There are no canonical methods for performing such compensations; hence, a number of different procedures serving this goal in different ways can be found in the literature. Unfortunately, the normalization has a significant impact on the final results. Different methods yield very different numbers of detected "significant peaks" even in the simplest scenario of ChIP-Seq experiments that compare the enrichment in a single sample relative to a matching control. This becomes an even more acute issue in the more general case of the comparison of multiple samples, where a number of arbitrary design choices will be required in the data analysis stage, each option resulting in possibly (significantly) different outcomes. In this article, we investigate a principled statistical procedure that eliminates the need for a normalization step. We outline its basic properties, in particular the scaling upon depth of sequencing. For the sake of illustration and comparison, we report the results of re-analyzing a ChIP-Seq experiment for transcription factor binding site detection. In order to quantify the differences between outcomes, we use a novel method based on the accuracy of in silico prediction by support vector machine (SVM) models trained on part of the genome and tested on the remainder. See Kowalczyk et al. ( 2009 ) for supplementary material.


Assuntos
Algoritmos , Genômica/métodos , Análise de Sequência de DNA/métodos , Inteligência Artificial , Anotação de Sequência Molecular/métodos
8.
Bioinformatics ; 25(17): 2279-80, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19535537

RESUMO

SUMMARY: The shorter and vastly more numerous reads produced by second-generation sequencing technologies require new tools that can assemble massive numbers of reads in reasonable time. Existing short-read assembly tools can be classified into two categories: greedy extension-based and graph-based. While the graph-based approaches are generally superior in terms of assembly quality, the computer resources required for building and storing a huge graph are very high. In this article, we present Taipan, an assembly algorithm which can be viewed as a hybrid of these two approaches. Taipan uses greedy extensions for contig construction but at each step realizes enough of the corresponding read graph to make better decisions as to how assembly should continue. We show that this approach can achieve an assembly quality at least as good as the graph-based approaches used in the popular Edena and Velvet assembly tools using a moderate amount of computing resources.


Assuntos
Algoritmos , Helicobacter pylori/genética , Análise de Sequência de DNA/métodos , Staphylococcus aureus/genética , Biologia Computacional , Bases de Dados de Ácidos Nucleicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...