Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(2): 1442-1451, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209304

RESUMO

The circular intensity differential scattering (CIDS), i.e. the normalized Mueller matrix element -S14/S11, can be used to detect the helical structures of DNA molecules in biological systems, however, no CIDS measurement from single particles has been reported to date. We report an innovative method for measuring CIDS phase functions from single particles individually flowing through a scattering laser beam. CIDS signals were obtained from polystyrene latex (PSL) microspheres with or without coating of DNA molecules, tryptophan particles, and aggregates of B. subtilis spores, at the size of 3 µm in diameter. Preliminary results show that this method is able to measure CIDS phase function in tens of microseconds from single particles, and has the ability to identify particles containing biological molecules.


Assuntos
Partículas e Gotas Aerossolizadas/análise , Bacillus subtilis/citologia , Monitoramento Ambiental/instrumentação , Material Particulado/análise , Poliestirenos/análise , Triptofano/análise , Difusão Dinâmica da Luz , Desenho de Equipamento , Microesferas , Tamanho da Partícula
2.
Opt Express ; 27(23): 33061-33069, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31878380

RESUMO

We present an advanced optical-trapping method that is capable of trapping arbitrary shapes of transparent and absorbing particles in air. Two parabolic reflectors were used to reflect the inner and outer parts of a single hollow laser beam, respectively, to form two counter-propagating conical beams and bring them into a focal point for trapping. This novel design demonstrated high trapping efficiency and strong trapping robustness with a simple optical configuration. Instead of using expensive microscope objectives, the parabolic reflectors can not only achieved large numerical aperture (N.A.) focusing, but were also able to focus the beam far away from optical surfaces to minimize optics contamination. This design also offered a large free space for flexible integration with other measuring techniques, such as optical-trapping Raman spectroscopy, for on-line single particle characterization.

3.
Appl Opt ; 56(23): 6577-6582, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-29047948

RESUMO

Detection and characterization of the presence of chemical agent aerosols in various complex atmospheric environments is an essential defense mission. Raman spectroscopy has the ability to identify chemical molecules, but there are limited numbers of photons detectable from single airborne aerosol particles as they are flowing through a detection system. In this paper, we report on a single-particle Raman spectrometer system that can measure strong spontaneous, stimulated, and resonance Raman spectral peaks from a single laser-trapped chemical aerosol particle, such as a droplet of the VX nerve agent chemical simulant diethyl phthalate. Using this system, time-resolved Raman spectra and elastic scattered intensities were recorded to monitor the chemical properties and size variation of the trapped particle. Such a system supplies a new approach for the detection and characterization of single airborne chemical aerosol particles.

4.
Appl Opt ; 56(3): B1-B4, 2017 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-28157859

RESUMO

We demonstrate a method for measuring elastic back-scattering patterns from single laser trapped micron-sized particles, spanning the scattering angle range of θ=167.7°-180° and φ=0°-360° in spherical coordinates. We calibrated the apparatus by capturing light-scattering patterns of 10 µm diameter borosilicate glass microspheres and comparing their scattered intensities with Lorenz-Mie theory. Back-scattering patterns are also presented from a single trapped Johnson grass spore, two attached Johnson grass spores, and a cluster of Johnson grass spores. The method has potential use in characterizing airborne aerosol particles, and may be used to provide back-scattering data for lidar applications.

5.
Appl Opt ; 56(3): B169-B178, 2017 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-28157879

RESUMO

A high-power fiber laser collimator and array of collimators are described with optical architecture, allowing one to transmit almost 100% of the full power output from fiber facets. In the case of coherent beam combining, more than 70% of the full power can be focused into a diffraction limited spot determined by the diameter of the conformal aperture. The truncated-Gaussian beam tails are not trapped inside the array but are redirected through the output lenses and dispersed outside of the array along with the main collimated beam, thus eliminating the requirement for cooling the array. Detailed analysis is presented for the beam tail propagation geometry's dependence on array optical parameters, including the interior redirecting lenses. The parasitic scattering from imperfections of the interior lenses is estimated to be as small as a few watts when 1.5-2 kW is emitted by each fiber facet.

6.
J Opt Soc Am A Opt Image Sci Vis ; 30(6): 1256-60, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24323113

RESUMO

Polarization analyzers are an essential measuring tool to improve the characteristics of optical components and optimize them with respect to a useful application in optical networks. We describe an instrument of this kind, which consists of two crossed birefringent wedges and acts as a continuous structured polarizer for all the states of polarization of light. We analyze this device theoretically by using the Poincaré-sphere and the Jones-matrix method and verify our results in a number of experiments with quartz wedges and red filtered light. Different realizations of this instrument are discussed, and an application as a beam splitter for all the states of polarization is proposed.

7.
Opt Lett ; 36(22): 4455-7, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22089595

RESUMO

We demonstrate coherent combining (phase locking) of seven laser beams emerging from an adaptive fiber-collimator array over a 7 km atmospheric propagation path using a target-in-the-loop (TIL) setting. Adaptive control of the piston and the tip and tilt wavefront phase at each fiber-collimator subaperture resulted in automatic focusing of the combined beam onto an unresolved retroreflector target (corner cube) with precompensation of quasi-static and atmospheric turbulence-induced phase aberrations. Both phase locking (piston) and tip-tilt control were performed by maximizing the target-return optical power using iterative stochastic parallel gradient descent (SPGD) techniques. The performance of TIL coherent beam combining and atmospheric mitigation was significantly increased by using an SPGD control variation that accounts for the round-trip propagation delay (delayed SPGD).

8.
J Opt Soc Am A Opt Image Sci Vis ; 27(11): A106-21, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21045873

RESUMO

Control methods and system architectures that can be used for locking in phase of multiple laser beams that are generated at the transmitter aperture plane of a coherent fiber-collimator array system (pupil-plane phase locking) are considered. In the proposed and analyzed phase-locking techniques, sensing of the piston phase differences is performed using interference of periphery (tail) sections of the laser beams prior to their clipping by the fiber-collimator transmitter apertures. This obscuration-free sensing technique eliminates the need for a beam splitter being directly located inside the optical train of the transmitted beams--one of the major drawbacks of large-aperture and/or high-power fiber-array systems. Numerical simulation results demonstrate efficiency of the proposed phase-locking methods.

9.
Appl Opt ; 48(1): A47-57, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19107154

RESUMO

Compensation of extended (deep) turbulence effects is one of the most challenging problems in adaptive optics (AO). In the AO approach described, the deep turbulence wave propagation regime was achieved by imaging stars at low elevation angles when image quality improvement with conventional AO was poor. These experiments were conducted at the U.S. Air Force Maui Optical and Supercomputing Site (AMOS) by using the 3.63 m telescope located on Haleakala, Maui. To enhance compensation performance we used a cascaded AO system composed of a conventional AO system based on a Shack-Hartmann wavefront sensor and a deformable mirror with 941 actuators, and an AO system based on stochastic parallel gradient descent optimization with four deformable mirrors (75 control channels). This first-time field demonstration of a cascaded AO system achieved considerably improved performance of wavefront phase aberration compensation. Image quality was improved in a repeatable way in the presence of stressing atmospheric conditions obtained by using stars at elevation angles as low as 15 degrees.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...