Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(14)2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37513148

RESUMO

Neuromorphic computing, reconfigurable optical metamaterials that are operational over a wide spectral range, holographic and nonvolatile displays of extremely high resolution, integrated smart photonics, and many other applications need next-generation phase-change materials (PCMs) with better energy efficiency and wider temperature and spectral ranges to increase reliability compared to current flagship PCMs, such as Ge2Sb2Te5 or doped Sb2Te. Gallium tellurides are favorable compounds to achieve the necessary requirements because of their higher melting and crystallization temperatures, combined with low switching power and fast switching rate. Ga2Te3 and non-stoichiometric alloys appear to be atypical PCMs; they are characterized by regular tetrahedral structures and the absence of metavalent bonding. The sp3 gallium hybridization in cubic and amorphous Ga2Te3 is also different from conventional p-bonding in flagship PCMs, raising questions about its phase-change mechanism. Furthermore, gallium tellurides exhibit a number of unexpected and highly unusual phenomena, such as nanotectonic compression and viscosity anomalies just above their melting points. Using high-energy X-ray diffraction, supported by first-principles simulations, we will elucidate the atomic structure of amorphous Ga2Te5 PLD films, compare it with the crystal structure of tetragonal gallium pentatelluride, and investigate the electrical, optical, and thermal properties of these two materials to assess their potential for memory applications, among others.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36780579

RESUMO

The phenomenon of phase change transition has been a fascinating research subject over decades due to a possibility of dynamically controlled materials properties, allowing the creation of optical devices with unique features. The present paper unravels the optical characteristics and terahertz (THz) dielectric permittivity of a novel phase change material (PCM), GeTe2, prepared by pulsed laser deposition (PLD) and their remarkable contrast in crystalline and amorphous states, in particular, a difference of 7 orders of magnitude in conductivity. The THz spectra were analyzed using the harmonic oscillator and Drude term. Using GeTe2 PLD films, we designed and prepared a THz metasurface in the form of periodic structure and revealed a possibility of tuning the THz resonance either by a thermal control or light-induced crystallization response, thus achieving the dynamic and tunable functionality of the metastructure. We propose controlling the state of metasurface by observing the intensity characteristics of the Raman peak of 155 cm-1. Density functional theory (DFT) modeling demonstrates that in the process of crystallization the mode intensity of 155 cm-1 assigned to Te-Te stretching in amorphous chain fragments decreases and disappears at full crystallization.

3.
Phys Chem Chem Phys ; 22(44): 25560-25573, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33146174

RESUMO

Phase-change materials based on tellurides are widely used for optical storage (DVD and Blu-ray disks), non-volatile random access memories and for development of neuromorphic computing. Narrow-gap tellurides are intrinsically limited in the telecom spectral window, where materials having a wider gap are needed. Here we show that gallium sulfide GaS thin films prepared by pulsed laser deposition reveal good transparency from the visible to the mid-IR spectral range with optical gap Eg = 2.34 eV, high refractive index nR = 2.50 over the 0.8 ≤ λ ≤ 2.5 µm range and, unlike canonical chalcogenide glasses, the absence of photo-structural transformations with a laser-induced peak power density damage threshold above 1.4 TW cm-2 at 780 nm. The origin of the excellent damage threshold under a high-power laser and UV light irradiation resides in the rigid tetrahedral structure of vitreous GaS studied by high-energy X-ray diffraction and Raman spectroscopy and supported by first-principles simulations. The average local coordination number appears to be m = 3.44, well above the optimal connectivity, 2.4 ≤ m ≤ 2.7, and the total volume of microscopic voids and cavities is 34.4%, that is, lower than for the vast majority of binary sulfide glasses. The glass-crystal phase transition in gallium sulfide thin films may be accompanied by a drastic change in the nonlinear optical properties, opening up a new dimension for memory applications in the visible to mid-IR spectral ranges.

4.
J Phys Chem Lett ; 11(2): 504-509, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31892279

RESUMO

Single-walled carbon nanotubes (SWCNTs) possess extraordinary physical and chemical properties. Thin films of randomly oriented SWCNTs have great potential in many opto-electro-mechanical applications. However, good adhesion of SWCNT films with a substrate material is pivotal for their practical use. Here, for the first time, we systematically investigate the adhesion properties of SWCNT thin films with commonly used substrates such as glass (SiO2), indium tin oxide (ITO), crystalline silicon (C-Si), amorphous silicon (a-Si:H), zirconium oxide (ZrO2), platinum (Pt), polydimethylsiloxane (PDMS), and SWCNTs for self-adhesion using atomic force microscopy. By comparing the results obtained in air and inert Ar atmospheres, we observed that the surface state of the materials greatly contributes to their adhesion properties. We found that the SWCNT thin films have stronger adhesion in an inert atmosphere. The adhesion in the air can be greatly improved by a fluorination process. Experimental and theoretical analyses suggest that adhesion depends on the atmospheric conditions and surface functionalization.

5.
Sci Rep ; 9(1): 17443, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31767910

RESUMO

Zinc oxy-selenide Zn(O,Se) is a novel material, that can replace the toxic CdS buffer layer in thin film solar cells and other optoelectronic devices. In this paper a systematic study of the structural, optical and electrical properties of Zn(O,Se) layers, grown by pulsed laser deposition under 50 mTorr of nitrogen background pressure, over a wide range of the substrate temperature, from RT to 600 °C, is reported. XRD, Raman, HR-SEM, XPS, UV-Vis techniques and Hall effect measurements have been used to investigate the structural, and optoelectronic properties of Zn(O,Se) layers. XRD analysis revealed that the polycrystalline ternary Zn(O,Se) phase formed at 500 °C. Raman analysis confirmed the formation of the polycrystalline Zn(O,Se) phase at 500 °C and an amorphous phase at substrate temperatures below 500 °C. Similarly, XPS analysis accompanied with the modified Auger parameters confirmed formation of ternary Zn(O,Se) layer at 500 °C as well. HR-SEM investigation showed the growth of homogenous, dense and adherent films onto a glass substrate. Furthermore, optical studies revealed that all prepared films are practically transparent in the visible region of the spectrum, with a band gap around 3 eV. Hall effect measurements revealed that conductivity, and electron concentration, increased by four orders of magnitude at 600 °C. It was found, that nitrogen background pressure maintained stable ratios of elemental contents in the whole range of the substrate temperature for Zn(O,Se) layers.

6.
Nanotechnology ; 29(10): 105404, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29384726

RESUMO

We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high-quality SWCNTs with conductivity enhanced by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with varying SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit J sc , open-circuit V oc , and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and an efficiency of 3.4% under simulated one-sun AM 1.5 G direct illumination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...