Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15388, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965296

RESUMO

Ectothermic animals that live in seasonally cold regions must adapt to seasonal variation and specific environmental conditions. During the winter, some amphibians hibernate on land and encounter limited environmental water, deficient oxygen, and extremely low temperatures that can cause the whole body freezing. These stresses trigger physiological and biochemical adaptations in amphibians that allow them to survive. Rana sylvatica, commonly known as the wood frog, shows excellent freeze tolerance. They can slow their metabolic activity to a near halt and endure freezing of 65-70% of their total body water as extracellular ice during hibernation, returning to normal when the temperatures rise again. To investigate the molecular adaptations of freeze-tolerant wood frogs, a comprehensive proteomic analysis was performed on frog liver tissue after anoxia, dehydration, or freezing exposures using a label-free LC-MS/MS proteomic approach. Quantitative proteomic analysis revealed that 87, 118, and 86 proteins were significantly upregulated in dehydrated, anoxic, and frozen groups, suggesting potential protective functions. The presence of three upregulated enzymes, glutathione S-transferase (GST), aldolase (ALDOA), and sorbitol dehydrogenase (SORD), was also validated. For all enzymes, the specific enzymatic activity was significantly higher in the livers of frozen and anoxic groups than in the controls. This study reveals that GST, ALDOA, and SORD might participate in the freeze tolerance mechanism by contributing to regulating cellular detoxification and energy metabolism.


Assuntos
Desidratação , Congelamento , Hipóxia , Fígado , Proteômica , Ranidae , Animais , Fígado/metabolismo , Proteômica/métodos , Ranidae/metabolismo , Desidratação/metabolismo , Hipóxia/metabolismo , Proteoma/metabolismo , Espectrometria de Massas em Tandem , Resposta ao Choque Frio
2.
Biomolecules ; 14(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38672511

RESUMO

TG2 is a unique member of the transglutaminase family as it undergoes a dramatic conformational change, allowing its mutually exclusive function as either a cross-linking enzyme or a G-protein. The enzyme's dysregulated activity has been implicated in a variety of pathologies (e.g., celiac disease, fibrosis, cancer), leading to the development of a wide range of inhibitors. Our group has primarily focused on the development of peptidomimetic targeted covalent inhibitors, the nature and size of which were thought to be important features to abolish TG2's conformational dynamism and ultimately inhibit both its activities. However, we recently demonstrated that the enzyme was unable to bind guanosine triphosphate (GTP) when catalytically inactivated by small molecule inhibitors. In this study, we designed a library of models targeting covalent inhibitors of progressively smaller sizes (15 to 4 atoms in length). We evaluated their ability to inactivate TG2 by measuring their respective kinetic parameters kinact and KI. Their impact on the enzyme's ability to bind GTP was then evaluated and subsequently correlated to the conformational state of the enzyme, as determined via native PAGE and capillary electrophoresis. All irreversible inhibitors evaluated herein locked TG2 in its open conformation and precluded GTP binding. Therefore, we conclude that steric bulk and structural complexity are not necessary factors to consider when designing TG2 inhibitors to abolish G-protein activity.


Assuntos
Alquilantes , Domínio Catalítico , Proteínas de Ligação ao GTP , Proteína 2 Glutamina gama-Glutamiltransferase , Transglutaminases , Transglutaminases/química , Transglutaminases/metabolismo , Transglutaminases/antagonistas & inibidores , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Humanos , Alquilantes/química , Alquilantes/farmacologia , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Compostos de Sulfidrila/química , Compostos de Sulfidrila/farmacologia , Conformação Proteica , Cinética , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia
3.
Cell Death Discov ; 10(1): 140, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485929

RESUMO

Multiple oncogenic alterations contribute to breast cancer development. Metabolic reprogramming, deeply contributing to tumor microenvironment (TME) education, is now widely recognized as a hallmark of cancer. The reverse Warburg effect induces cancer-associated fibroblasts (CAFs) to produce and secrete L-lactate, enhancing malignant characteristics such as neoangiogenesis, metastatic dissemination, and treatment resistance. Monocarboxylate transporter (MCT) 4 is involved in lactate efflux from CAFs into stromal and epithelial cells. Here, we first assess the expression of miR-425-5p and its target MCT4 in breast cancer CAFs and normal fibroblasts. We analyzed the metabolic changes induced by miR-425-5p in CAFs and its role in the education of breast cancer epithelial cells. We show that miR-425-5p-induced MCT4 knockdown decreased lactate extrusion from CAFs and its availability in the TME. miR-425-5p overexpression induced profound metabolic transformation in CAFs, ultimately influencing breast cancer metabolism. Furthermore, miR-425-5p impaired the capacity of CAFs to sustain vessel formation and breast cancer cell migration, viability, and proliferation. These findings emphasize the key role of miR-425-5p in breast cancer metabolism and aggressiveness, and its possible importance for breast cancer therapy and monitoring.

4.
Cancers (Basel) ; 16(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38339272

RESUMO

Breast cancer (BC) is the second most frequently diagnosed cancer and accounts for approximately 25% of new cancer cases in Canadian women. Using biomarkers as a less-invasive BC diagnostic method is currently under investigation but is not ready for practical application in clinical settings. During the last decade, extracellular vesicles (EVs) have emerged as a promising source of biomarkers because they contain cancer-derived proteins, RNAs, and metabolites. In this study, EV proteins from small EVs (sEVs) and medium EVs (mEVs) were isolated from BC MDA-MB-231 and MCF7 and non-cancerous breast epithelial MCF10A cell lines and then analyzed by two approaches: global proteomic analysis and enrichment of EV surface proteins by Sulfo-NHS-SS-Biotin labeling. From the first approach, proteomic profiling identified 2459 proteins, which were subjected to comparative analysis and correlation network analysis. Twelve potential biomarker proteins were identified based on cell line-specific expression and filtered by their predicted co-localization with known EV marker proteins, CD63, CD9, and CD81. This approach resulted in the identification of 11 proteins, four of which were further investigated by Western blot analysis. The presence of transmembrane serine protease matriptase (ST14), claudin-3 (CLDN3), and integrin alpha-7 (ITGA7) in each cell line was validated by Western blot, revealing that ST14 and CLDN3 may be further explored as potential EV biomarkers for BC. The surface labeling approach enriched proteins that were not identified using the first approach. Ten potential BC biomarkers (Glutathione S-transferase P1 (GSTP1), Elongation factor 2 (EEF2), DEAD/H box RNA helicase (DDX10), progesterone receptor (PGR), Ras-related C3 botulinum toxin substrate 2 (RAC2), Disintegrin and metalloproteinase domain-containing protein 10 (ADAM10), Aconitase 2 (ACO2), UTP20 small subunit processome component (UTP20), NEDD4 binding protein 2 (N4BP2), Programmed cell death 6 (PDCD6)) were selected from surface proteins commonly identified from MDA-MB-231 and MCF7, but not identified in MCF10A EVs. In total, 846 surface proteins were identified from the second approach, of which 11 were already known as BC markers. This study supports the proposition that Evs are a rich source of known and novel biomarkers that may be used for non-invasive detection of BC. Furthermore, the presented datasets could be further explored for the identification of potential biomarkers in BC.

5.
J Am Chem Soc ; 146(6): 3660-3674, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38315643

RESUMO

Ligand-enabled oxidative addition of Csp2-X bonds to Au(I) centers has recently appeared as a valuable strategy for the development of catalytic RedOx processes. Several cross-coupling reactions that were previously considered difficult to achieve were reported lately, thus expanding the synthetic potential of gold(I) complexes beyond the traditional nucleophilic functionalization of π-systems. MeDalPhos has played an important role in this development and, despite several studies on alternative structures, remains, so far, the only general ligand for such process. We report herein the discovery and DFT-enabled structural optimization of a new family of hemilabile (P∧N) ligands that can promote the oxidative addition of aryl iodides to gold(I). These flexible ligands, which possess a common 2-methylamino heteroaromatic N-donor motif, are structurally and electronically tunable, beyond being easily accessible and affordable. The corresponding Au(I) complexes were shown to outperform the reactivity of (MeDalPhos)Au(I) in a series of alkoxy- and amidoarylations of alkenes. Their synthetic potential and comparatively higher reactivity were further highlighted in the thiotosylation of aryl iodides, a challenging unreported C-S cross-coupling reaction that could not be achieved under classical Pd(0/II) catalysis and that allows for general and divergent access to aryl sulfur derivatives.

6.
Anal Bioanal Chem ; 416(7): 1697-1705, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38305861

RESUMO

Aptamers are increasingly employed in SARS-CoV-2 theragnostics in recent years. Characterization of aptamers, testing affinity and kinetic parameters (e.g., equilibrium dissociation constant (KD), kon, and koff), can be done by several methods and influenced by many factors. This study aims to characterize the binding of aptamers to SARS-CoV-2 nucleocapsid (N) protein using capillary electrophoresis (CE) and bio-layer interferometry (BLI). These two analytical methods differ by how the aptamer binds to its target protein once the aptamer, as a capture ligand, is partitioned in solution (CE) or immobilized on the biosensor (BLI). With CE, the KD values of the N-binding aptamers (tNSP1, tNSP2, and tNSP3) were determined to be 18 ± 4 nM, 45 ± 11 nM, and 32 ± 7 nM, respectively, while the KD measurements by BLI yielded 4.8 ± 0.6, 4.5 ± 0.5, and 2.9 ± 0.3 nM, respectively. CE results showed a higher KD across all aptamers tested. The differences in the steric hindrance and confirmational structures of the aptamers immobilized on the BLI biosensors versus those suspended in the CE sample solution affect the molecular interactions between aptamers and the target proteins. Moreover, the buffer composition including pH and ionic strength can influence the stability of aptamer structures, or aptamer-protein complexes. All these variables affect the binding and calculated KD. In this sense, a KD value alone is not sufficient to make comparisons between aptamers; instead, the entire experimental setup should also be considered. This is particularly important when implementing aptamers in different bioanalytical systems.


Assuntos
Aptâmeros de Nucleotídeos , COVID-19 , Humanos , Aptâmeros de Nucleotídeos/química , Eletroforese Capilar/métodos , Interferometria , SARS-CoV-2
7.
Front Mol Biosci ; 10: 1184285, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37363395

RESUMO

Introduction: Breast cancer (BC) diagnostics lack noninvasive methods and procedures for screening and monitoring disease dynamics. Admitted CellSearch® is used for fluid biopsy and capture of circulating tumor cells of only epithelial origin. Here we describe an RNA aptamer (MDA231) for detecting BC cells in clinical samples, including blood. The MDA231 aptamer was originally selected against triple-negative breast cancer cell line MDA-MB-231 using cell-SELEX. Methods: The aptamer structure in solution was predicted using mFold program and molecular dynamic simulations. The affinity and specificity of the evolved aptamers were evaluated by flow cytometry and laser scanning microscopy on clinical tissues from breast cancer patients. CTCs were isolated form the patients' blood using the developed method of aptamer-based magnetic separation. Breast cancer origin of CTCs was confirmed by cytological, RT-qPCR and Immunocytochemical analyses. Results: MDA231 can specifically recognize breast cancer cells in surgically resected tissues from patients with different molecular subtypes: triple-negative, Luminal A, and Luminal B, but not in benign tumors, lung cancer, glial tumor and healthy epithelial from lungs and breast. This RNA aptamer can identify cancer cells in complex cellular environments, including tumor biopsies (e.g., tumor tissues vs. margins) and clinical blood samples (e.g., circulating tumor cells). Breast cancer origin of the aptamer-based magnetically separated CTCs has been proved by immunocytochemistry and mammaglobin mRNA expression. Discussion: We suggest a simple, minimally-invasive breast cancer diagnostic method based on non-epithelial MDA231 aptamer-specific magnetic isolation of circulating tumor cells. Isolated cells are intact and can be utilized for molecular diagnostics purposes.

8.
Biomedicines ; 11(4)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37189694

RESUMO

Cancer-derived small extracellular vesicles have been proposed as promising potential biomarkers for diagnosis and prognosis of breast cancer (BC). We performed a proteomic study of lysine acetylation of breast cancer-derived small extracellular vesicles (sEVs) to understand the potential role of the aberrant acetylated proteins in the biology of invasive ductal carcinoma and triple-negative BC. Three cell lines were used as models for this study: MCF10A (non-metastatic), MCF7 (estrogen and progesterone receptor-positive, metastatic) and MDA-MB-231 (triple-negative, highly metastatic). For a comprehensive protein acetylation analysis of the sEVs derived from each cell line, acetylated peptides were enriched using the anti-acetyl-lysine antibody, followed by LC-MS/MS analysis. In total, there were 118 lysine-acetylated peptides, of which 22, 58 and 82 have been identified in MCF10A, MCF7 and MDA-MB-231 cell lines, respectively. These acetylated peptides were mapped to 60 distinct proteins and mainly identified proteins involved in metabolic pathways. Among the acetylated proteins identified in cancer-derived sEVs from MCF7 and MDA-MB-231 cell lines are proteins associated with the glycolysis pathway, annexins and histones. Five acetylated enzymes from the glycolytic pathway, present only in cancer-derived sEVs, were validated. These include aldolase (ALDOA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK1), enolase (ENO) and pyruvate kinase M1/2 (PKM). For three of these enzymes (ALDOA, PGK1 and ENO) the specific enzymatic activity was significantly higher in MDA-MB-231 when compared with MCF10A-derived sEVs. This study reveals that sEVs contain acetylated glycolytic metabolic enzymes that could be interesting potential candidates for early BC diagnostics.

9.
Nanotoxicology ; 17(1): 20-41, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36861958

RESUMO

The increased commercial use and spread of nanoceria raises concerns about the risks associated with its effects on living organisms. Although Pseudomonas aeruginosa may be ubiquitous in nature, it is largely found in locations closely linked with human activity. P. aeruginosa san ai was used as a model organism for a deeper understanding of the interaction between biomolecules of the bacteria with this intriguing nanomaterial. A comprehensive proteomics approach along with analysis of altered respiration and production of targeted/specific secondary metabolites was conducted to study the response of P. aeruginosa san ai to nanoceria. Quantitative proteomics found that proteins associated with redox homeostasis, biosynthesis of amino acids, and lipid catabolism were upregulated. Proteins from outer cellular structures were downregulated, including transporters responsible for peptides, sugars, amino acids and polyamines, and the crucial TolB protein of the Tol-Pal system, required for the structural formation of the outer membrane layer. In accordance with the altered redox homeostasis proteins, an increased amount of pyocyanin, a key redox shuttle, and the upregulation of the siderophore, pyoverdine, responsible for iron homeostasis, were found. Production of extracellular molecules, e.g. pyocyanin, pyoverdine, exopolysaccharides, lipase, and alkaline protease, was significantly increased in P. aeruginosa san ai exposed to nanoceria. Overall, nanoceria at sublethal concentrations induces profound metabolic changes in P. aeruginosa san ai and provokes increased secretion of extracellular virulence factors, revealing the powerful influence this nanomaterial has on the vital functions of the microorganism.


Assuntos
Pseudomonas aeruginosa , Piocianina , Humanos , Piocianina/metabolismo , Proteômica , Proteínas de Bactérias/metabolismo
10.
Mol Ther Nucleic Acids ; 31: 731-743, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36816615

RESUMO

The spread of COVID-19 has affected billions of people across the globe, and the diagnosis of viral infection still needs improvement. Because of high immunogenicity and abundant expression during viral infection, SARS-CoV-2 nucleocapsid (N) protein could be an important diagnostic marker. This study aimed to develop a label-free optical aptasensor fabricated with a novel single-stranded DNA aptamer to detect the N protein. The N-binding aptamers selected using asymmetric-emulsion PCR-SELEX and their binding affinity and cross-reactivity were characterized by biolayer interferometry. The tNSP3 aptamer (44 nt) was identified to bind the N protein of wild type and Delta and Omicron variants with high affinity (KD in the range of 0.6-3.5 nM). Utilizing tNSP3 to detect the N protein spiked in human saliva evinced the potential of this aptamer with a limit of detection of 4.5 nM. Mass spectrometry analysis was performed along with molecular dynamics simulation to obtain an insight into how tNSP3 binds to the N protein. The identified epitope peptides are localized within the RNA-binding domain and C terminus of the N protein. Hence, we confirmed the performance of this aptamer as an analytical tool for COVID-19 diagnosis.

11.
Nucleic Acid Ther ; 32(6): 497-506, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35921069

RESUMO

Cisplatin is an effective drug for treating various cancer types. However, it is highly toxic for both healthy and tumor cells. Therefore, there is a need to reduce its therapeutic dose and increase targeted bioavailability. One of the ways to achieve this could be the coating of cisplatin with polysaccharides and specific carriers for targeted delivery. Nucleic acid aptamers could be used as carriers for the specific delivery of medicine to cancer cells. Cisplatin-arabinogalactan-aptamer (Cis-AG-Ap) conjugate was synthesized based on Cis-dichlorodiammineplatinum, Siberian larch arabinogalactan, and aptamer AS-42 specific to heat-shock proteins (HSP) 71 kDa (Hspa8) and HSP 90-beta (Hsp90ab1). The antitumor effect was estimated using ascites and metastatic Ehrlich tumor models. Cis-AG-Ap toxicity was assessed by blood biochemistry on healthy mice. Here, we demonstrated enhanced anticancer activity of Cis-AG-Ap and its specific accumulation in tumor foci. It was shown that targeted delivery allowed a 15-fold reduction in the therapeutic dose of cisplatin and its toxicity. Cis-AG-Ap sufficiently suppressed the growth of Ehrlich's ascites carcinoma, the mass and extent of tumor metastasis in vivo. Arabinogalactan and the aptamers promoted cisplatin efficiency by enhancing its bioavailability. The described strategy could be very promising for targeted anticancer therapy.


Assuntos
Ácidos Nucleicos , Animais , Camundongos , Cisplatino/farmacologia
12.
Molecules ; 27(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35630784

RESUMO

Starch is the primary form of reserve carbohydrate storage in plants. Rice (Oryza sativa L.) is a monocot whose reserve starch is organized into compounded structures within the amyloplast, rather than a simple starch grain (SG). The mechanism governing the assembly of the compound SG from polyhedral granules in apposition, however, remains unknown. To further characterize the proteome associated with these compounded structures, three distinct methods of starch granule preparation (dispersion, microsieve, and flotation) were performed. Phase separation of peptides (aqueous trypsin-shaving and isopropanol solubilization of residual peptides) isolated starch granule-associated proteins (SGAPs) from the distal proteome of the amyloplast and the proximal 'amylome' (the amyloplastic proteome), respectively. The term 'distal proteome' refers to SGAPs loosely tethered to the amyloplast, ones that can be rapidly proteolyzed, while proximal SGAPs are those found closer to the remnant amyloplast membrane fragments, perhaps embedded therein-ones that need isopropanol solvent to be removed from the mature organelle surface. These two rice starch-associated peptide samples were analyzed using nano-liquid chromatography-tandem mass spectrometry (Nano-HPLC-MS/MS). Known and novel proteins, as well as septum-like structure (SLS) proteins, in the mature rice SG were found. Data mining and gene ontology software were used to categorize these putative plastoskeletal components as a variety of structural elements, including actins, tubulins, tubulin-like proteins, and cementitious elements such as reticulata related-like (RER) proteins, tegument proteins, and lectins. Delineating the plastoskeletal proteome begins by understanding how each starch granule isolation procedure affects observed cytoplasmic and plastid proteins. The three methods described herein show how the technique used to isolate SGs differentially impacts the subsequent proteomic analysis and results obtained. It can thus be concluded that future investigations must make judicious decisions regarding the methodology used in extracting proteomic information from the compound starch granules being assessed, since different methods are shown to yield contrasting results herein. Data are available via ProteomeXchange with identifier PXD032314.


Assuntos
Oryza , 2-Propanol/metabolismo , Endosperma/química , Oryza/química , Proteínas de Plantas/metabolismo , Plastídeos/metabolismo , Proteoma/metabolismo , Proteômica , Amido/química , Espectrometria de Massas em Tandem
13.
Int J Mol Sci ; 23(7)2022 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35409352

RESUMO

Extracellular vesicles (EVs) shuttle proteins, RNA, DNA, and lipids crucial for cell-to-cell communication. Recent findings have highlighted that EVs, by virtue of their cargo, may also contribute to breast cancer (BC) growth and metastatic dissemination. Indeed, EVs are gaining great interest as non-invasive cancer biomarkers. However, little is known about the biological and physical properties of EVs from malignant BC lesions, and even less is understood about EVs from non-malignant lesions, such as breast fibroadenoma (FAD), which are clinically managed using conservative approaches. Thus, for this pilot study, we attempted to purify and explore the proteomic profiles of EVs from benign breast lesions, HER2+ BCs, triple-negative BCs (TNBCs), and continuous BC cell lines (i.e., BT-549, MCF-10A, and MDA-MB-231), combining experimental and semi-quantitative approaches. Of note, proteome-wide analyses showed 49 common proteins across EVs harvested from FAD, HER2+ BCs, TNBCs, and model BC lines. This is the first feasibility study evaluating the physicochemical composition and proteome of EVs from benign breast cells and primary and immortalized BC cells. Our preliminary results hold promise for possible implications in precision medicine for BC.


Assuntos
Neoplasias da Mama , Vesículas Extracelulares , Fibroadenoma , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Vesículas Extracelulares/metabolismo , Feminino , Fibroadenoma/metabolismo , Fibroadenoma/patologia , Flavina-Adenina Dinucleotídeo/metabolismo , Humanos , Projetos Piloto , Proteoma/metabolismo , Proteômica/métodos
14.
Microbiol Res ; 259: 126998, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35276454

RESUMO

Polyextremophilic, hydrocarbonoclastic Pseudomonas aeruginosa san ai can survive under extreme environmental challenges in the presence of a variety of pollutants such as organic solvents and hydrocarbons, particularly aromatics, heavy metals, and high pH. To date, the metabolic plasticity of the extremophilic P. aeruginosa, has not been sufficiently studied in regard to the effect of changing carbon sources. Therefore, the present study explores the carbon metabolic pathways of polyextremophilic P. aeruginosa san ai grown on sodium benzoate versus glucose and its potential for aromatic degradation. P. aeruginosa san ai removed/metabolised nearly 430 mg/L of benzoate for 48 h, demonstrating a high capacity for aromatic degradation. Comparative functional proteomics, targeted metabolomics and genomics analytical approaches were employed to study the carbon metabolism of the P. aeruginosa san ai. Functional proteomic study of selected enzymes participating in the ß-ketoadipate and the Entner-Doudoroff pathways revealed a metabolic reconfiguration induced by benzoate compared to glucose. Metabolome analysis implied the existence of both catechol and protocatechuate branches of the ß-ketoadipate pathway. Enzymatic study of benzoate grown cultures confirmed the activity of the ortho- catechol branch of the ß-ketoadipate pathway. Even high concentrations of benzoate did not show increased stress protein synthesis, testifying to its extremophilic nature capable of surviving in harsh conditions. This ability of Pseudomonas aeruginosa san ai to efficiently degrade benzoate can provide a wide range of use of this strain in environmental and agricultural application.


Assuntos
Benzoatos , Extremófilos , Proteínas de Bactérias/metabolismo , Benzoatos/metabolismo , Biodegradação Ambiental , Carbono , Glucose/metabolismo , Proteômica , Pseudomonas aeruginosa/metabolismo
15.
Biomedicines ; 10(2)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35203617

RESUMO

Small membrane-derived extracellular vesicles have been proposed as participating in several cancer diseases, including breast cancer (BC). We performed a phosphoproteomic analysis of breast cancer-derived small extracellular vesicles (sEVs) to provide insight into the molecular and cellular regulatory mechanisms important for breast cancer tumor progression and metastasis. We examined three cell line models for breast cancer: MCF10A (non-malignant), MCF7 (estrogen and progesterone receptor-positive, metastatic), and MDA-MB-231 (triple-negative, highly metastatic). To obtain a comprehensive overview of the sEV phosphoproteome derived from each cell line, effective phosphopeptide enrichment techniques IMAC and TiO2, followed by LC-MS/MS, were performed. The phosphoproteome was profiled to a depth of 2003 phosphopeptides, of which 207, 854, and 1335 were identified in MCF10A, MCF7, and MDA-MB-231 cell lines, respectively. Furthermore, 2450 phosphorylation sites were mapped to 855 distinct proteins, covering a wide range of functions. The identified proteins are associated with several diseases, mostly related to cancer. Among the phosphoproteins, we validated four enzymes associated with cancer and present only in sEVs isolated from MCF7 and MDA-MB-231 cell lines: ATP citrate lyase (ACLY), phosphofructokinase-M (PFKM), sirtuin-1 (SIRT1), and sirtuin-6 (SIRT6). With the exception of PFKM, the specific activity of these enzymes was significantly higher in MDA-MB-231 when compared with MCF10A-derived sEVs. This study demonstrates that sEVs contain functional metabolic enzymes that could be further explored for their potential use in early BC diagnostic and therapeutic applications.

16.
Commun Biol ; 5(1): 153, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35194137

RESUMO

Hemojuvelin (HJV) enhances signaling to the iron hormone hepcidin and its deficiency causes iron overload, a risk factor for hepatocellular carcinoma (HCC). We utilized Hjv-/- mice to dissect mechanisms for hepatocarcinogenesis. We show that suboptimal treatment with diethylnitrosamine (DEN) triggers HCC only in Hjv-/- but not wt mice. Liver proteomics data were obtained by mass spectrometry. Hierarchical clustering analysis revealed that Hjv deficiency and DEN elicit similar liver proteomic responses, including induction of mitochondrial proteins. Dietary iron overload of wt mice does not recapitulate the liver proteomic phenotype of Hjv-/- animals, which is only partially corrected by iron depletion. Consistent with these data, primary Hjv-/- hepatocytes exhibit mitochondrial hyperactivity, while aged Hjv-/- mice develop spontaneous HCC. Moreover, low expression of HJV or hepcidin (HAMP) mRNAs predicts poor prognosis in HCC patients. We conclude that Hjv has a hepatoprotective function and its deficiency in mice promotes mitochondrial dysfunction and hepatocarcinogenesis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Idoso , Animais , Carcinoma Hepatocelular/genética , Humanos , Neoplasias Hepáticas/genética , Proteínas de Membrana/metabolismo , Camundongos , Mitocôndrias/metabolismo , Proteômica
17.
Chemistry ; 28(12): e202104481, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35025110

RESUMO

Aptamer selection against novel infections is a complicated and time-consuming approach. Synergy can be achieved by using computational methods together with experimental procedures. This study aims to develop a reliable methodology for a rational aptamer in silico et vitro design. The new approach combines multiple steps: (1) Molecular design, based on screening in a DNA aptamer library and directed mutagenesis to fit the protein tertiary structure; (2) 3D molecular modeling of the target; (3) Molecular docking of an aptamer with the protein; (4) Molecular dynamics (MD) simulations of the complexes; (5) Quantum-mechanical (QM) evaluation of the interactions between aptamer and target with further analysis; (6) Experimental verification at each cycle for structure and binding affinity by using small-angle X-ray scattering, cytometry, and fluorescence polarization. By using a new iterative design procedure, structure- and interaction-based drug design (SIBDD), a highly specific aptamer to the receptor-binding domain of the SARS-CoV-2 spike protein, was developed and validated. The SIBDD approach enhances speed of the high-affinity aptamers development from scratch, using a target protein structure. The method could be used to improve existing aptamers for stronger binding. This approach brings to an advanced level the development of novel affinity probes, functional nucleic acids. It offers a blueprint for the straightforward design of targeting molecules for new pathogen agents and emerging variants.


Assuntos
Aptâmeros de Nucleotídeos , COVID-19 , Aptâmeros de Nucleotídeos/química , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , SARS-CoV-2 , Técnica de Seleção de Aptâmeros , Glicoproteína da Espícula de Coronavírus
18.
Sensors (Basel) ; 21(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34883850

RESUMO

We describe the preparation and characterization of an aptamer-based electrochemical sensor to lung cancer tumor markers in human blood. The highly reproducible aptamer sensing layer with a high density (up to 70% coverage) on the gold electrode was made. Electrochemical methods and confocal laser scanning microscopy were used to study the stability of the aptamer layer structure and binding ability. A new blocking agent, a thiolated oligonucleotide with an unrelated sequence, was applied to fill the aptamer layer's defects. Electrochemical aptasensor signal processing was enhanced using deep learning and computer simulation of the experimental data array. It was found that the combinations (coupled and tripled) of cyclic voltammogram features allowed for distinguishing between the samples from lung cancer patients and healthy candidates with a mean accuracy of 0.73. The capacitive component from the non-Faradic electrochemical impedance spectroscopy data indicated the tumor marker's presence in a sample. These findings allowed for the creation of highly informative aptasensors for early lung cancer diagnostics.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Neoplasias Pulmonares , Simulação por Computador , Técnicas Eletroquímicas , Eletrodos , Ouro , Humanos , Neoplasias Pulmonares/diagnóstico
19.
Mol Ther Nucleic Acids ; 26: 1159-1172, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34853715

RESUMO

Identification of primary tumors and metastasis sites is an essential step in cancer diagnostics and the following treatment. Positron emission tomography-computed tomography (PET/CT) is one of the most reliable methods for scanning the whole organism for malignancies. In this work, we synthesized an 11C-labeled oligonucleotide primer and hybridized it to an anti-cancer DNA aptamer. The 11C-aptamer was applied for in vivo imaging of Ehrlich ascites carcinoma and its metastases in mice using PET/CT. The imaging experiments with the 11C-aptamer determined very small primary and secondary tumors of 3 mm2 and less. We also compared 11C imaging with the standard radiotracer, 2-deoxy-2-[fluorine-18]fluoro-D-glucose (18F-FDG), and found better selectivity of the 11C-aptamer to metastatic lesions in the metabolically active organs than 18F-FDG. 11C radionuclide with an ultra-short (20.38 min) half-life is considered safest for PET/CT imaging and does not cause false-positive results in heart imaging. Its combination with aptamers gives us high-specificity and high-contrast imaging of cancer cells and can be applied for PET/CT-guided drug delivery in cancer therapies.

20.
Mol Ther Nucleic Acids ; 25: 316-327, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34458013

RESUMO

Aptamers are short, single-stranded DNA or RNA oligonucleotide molecules that function as synthetic analogs of antibodies and bind to a target molecule with high specificity. Aptamer affinity entirely depends on its tertiary structure and charge distribution. Therefore, length and structure optimization are essential for increasing aptamer specificity and affinity. Here, we present a general optimization procedure for finding the most populated atomistic structures of DNA aptamers. Based on the existed aptamer LC-18 for lung adenocarcinoma, a new truncated LC-18 (LC-18t) aptamer LC-18t was developed. A three-dimensional (3D) shape of LC-18t was reported based on small-angle X-ray scattering (SAXS) experiments and molecular modeling by fragment molecular orbital or molecular dynamic methods. Molecular simulations revealed an ensemble of possible aptamer conformations in solution that were in close agreement with measured SAXS data. The aptamer LC-18t had stronger binding to cancerous cells in lung tumor tissues and shared the binding site with the original larger aptamer. The suggested approach reveals 3D shapes of aptamers and helps in designing better affinity probes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...