Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 213(Pt 10): 1651-8, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20435815

RESUMO

Takeoff and landing are critical phases in a flight. To better understand the functional importance of the kinematic adjustments birds use to execute these flight modes, we studied the wing and body movements of pigeons (Columba livia) during short-distance free-flights between two perches. The greatest accelerations were observed during the second wingbeat of takeoff. The wings were responsible for the majority of acceleration during takeoff and landing, with the legs contributing only one-quarter of the acceleration. Parameters relating to aerodynamic power output such as downstroke amplitude, wingbeat frequency and downstroke velocity were all greatest during takeoff flight and decreased with each successive takeoff wingbeat. This pattern indicates that downstroke velocity must be greater for accelerating flight to increase the amount of air accelerated by the wings. Pigeons used multiple mechanisms to adjust thrust and drag to accelerate during takeoff and decelerate during landing. Body angle, tail angle and wing plane angles all shifted from more horizontal orientations during takeoff to near-vertical orientations during landing, thereby reducing drag during takeoff and increasing drag during landing. The stroke plane was tilted steeply downward throughout takeoff (increasing from -60+/-5 deg. to -47+/-1 deg.), supporting our hypothesis that a downward-tilted stroke plane pushes more air rearward to accelerate the bird forward. Similarly, the stroke plane tilted upward during landing (increasing from -1+/-2 deg. to 17+/-7 deg.), implying that an upward-tilted stroke plane pushes more air forward to slow the bird down. Rotations of the stroke plane, wing planes and tail were all strongly correlated with rotation of the body angle, suggesting that pigeons are able to redirect aerodynamic force and shift between flight modes through modulation of body angle alone.


Assuntos
Columbidae/fisiologia , Voo Animal/fisiologia , Asas de Animais/fisiologia , Aceleração , Animais , Fenômenos Biomecânicos/fisiologia , Análise dos Mínimos Quadrados , Análise de Regressão , Cauda/fisiologia
2.
J Exp Biol ; 211(Pt 7): 1120-30, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18344487

RESUMO

Ascending or descending locomotion involves a change in potential energy (PE) and a corresponding change in power requirement. We sought to test whether the mechanical power required for steady ascending or descending flight is a simple sum of the power required for level flight and the power necessary for potential energy change. Pigeons (Columba livia) were trained to fly at varying angles of ascent and descent (60 degrees , 30 degrees , 0 degrees , -30 degrees , -60 degrees ), and were recorded using high-speed video. Detailed three-dimensional kinematics were obtained from the recordings, allowing analysis of wing movement. Aerodynamic forces and power requirements were then estimated from kinematic data. As expected, ;PE flight power' increased significantly with angle of flight (0.234 W deg.(-1)), though there appeared to be a limit on the amount of PE that the birds could gain or dissipate per wingbeat. We found that the total power output for flight at various angles was not different from the sum of power required for level flight and the PE rate of change for a given angle, except for the steep -60 degrees descent. The total power for steep descent was higher than this sum because of a higher induced power due to the bird's deceleration and slower flight velocity. Aerodynamic force estimates during mid-downstroke did not differ significantly in magnitude or orientation among flight angles. Pigeons flew fastest during -30 degrees flights (4.9+/-0.1 m s(-1)) and slowest at 60 degrees (2.9+/-0.1 m s(-1)). Although wingbeat frequency ranged from 6.1 to 9.6 Hz across trials, the variation was not significant across flight angles. Stroke plane angle was more horizontal, and the wing more protracted, for both +60 degrees and -60 degrees flights, compared with other flight path angles.


Assuntos
Columbidae/fisiologia , Voo Animal/fisiologia , Animais , Fenômenos Biomecânicos , Columbidae/anatomia & histologia , Modelos Biológicos , Asas de Animais/anatomia & histologia , Asas de Animais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...