Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
DNA Repair (Amst) ; 91-92: 102870, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32470850

RESUMO

By combining mutations in DNA repair genes, important and unexpected interactions between different repair pathways can be discovered. In this study, we identified a novel link between mismatch repair (MMR) genes and postreplication repair (PRR) in Saccharomyces cerevisiae. Strains lacking Rad5 (HLTF in mammals), a protein important for restarting stalled replication forks in the error-free PRR pathway, were supersensitive to the DNA methylating agent methyl methanesulfonate (MMS). Deletion of the mismatch repair genes, MSH2 or MSH6, which together constitutes the MutSα complex, partially suppressed the MMS super-sensitivity of the rad5Δ strain. Deletion of MSH2 also suppressed the MMS sensitivity of mms2Δ, which acts together with Rad5 in error-free PRR. However, inactivating the mismatch repair genes MSH3 and MLH1 did not suppress rad5Δ, showing that the suppression was specific for disabling MutSα. The partial suppression did not require translesion DNA synthesis (REV1, REV3 or RAD30), base excision repair (MAG1) or homologous recombination (RAD51). Instead, the underlying mechanism was dependent on RAD52 while independent of established pathways involving RAD52, like single-strand annealing and break-induced replication. We propose a Rad5- and Rad51-independent template switch pathway, capable of compensating for the loss of the error-free template-switch subpathway of postreplication repair, triggered by the loss of MutSα.


Assuntos
Dano ao DNA , DNA Helicases/metabolismo , Reparo de Erro de Pareamento de DNA , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , DNA Helicases/genética , DNA Fúngico/efeitos dos fármacos , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/genética , Deleção de Genes , Metanossulfonato de Metila/toxicidade , Proteína 1 Homóloga a MutL/genética , Proteína 1 Homóloga a MutL/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 3 Homóloga a MutS/genética , Proteína 3 Homóloga a MutS/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
2.
PLoS Genet ; 10(2): e1004106, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24516398

RESUMO

Meiotic recombination ensures the correct segregation of homologous chromosomes during gamete formation and contributes to DNA diversity through both large-scale reciprocal crossovers and very localised gene conversion events, also known as noncrossovers. Considerable progress has been made in understanding factors such as PRDM9 and SNP variants that influence the initiation of recombination at human hotspots but very little is known about factors acting downstream. To address this, we simultaneously analysed both types of recombinant molecule in sperm DNA at six highly active hotspots, and looked for disparity in the transmission of allelic variants indicative of any cis-acting influences. At two of the hotspots we identified a novel form of biased transmission that was exclusive to the noncrossover class of recombinant, and which presumably arises through differences between crossovers and noncrossovers in heteroduplex formation and biased mismatch repair. This form of biased gene conversion is not predicted to influence hotspot activity as previously noted for SNPs that affect recombination initiation, but does constitute a powerful and previously undetected source of recombination-driven meiotic drive that by extrapolation may affect thousands of recombination hotspots throughout the human genome. Intriguingly, at both of the hotspots described here, this drive favours strong (G/C) over weak (A/T) base pairs as might be predicted from the well-established correlations between high GC content and recombination activity in mammalian genomes.


Assuntos
Troca Genética , Meiose/genética , Recombinação Genética , Espermatozoides/crescimento & desenvolvimento , Alelos , Animais , Genoma Humano , Células Germinativas/crescimento & desenvolvimento , Histona-Lisina N-Metiltransferase/genética , Humanos , Masculino , Ácidos Nucleicos Heteroduplexes/genética , Polimorfismo de Nucleotídeo Único , Espermatozoides/metabolismo
3.
Proc Natl Acad Sci U S A ; 108(30): 12378-83, 2011 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-21750151

RESUMO

PRDM9 is a major specifier of human meiotic recombination hotspots, probably via binding of its zinc-finger repeat array to a DNA sequence motif associated with hotspots. However, our view of PRDM9 regulation, in terms of motifs defined and hotspots studied, has a strong bias toward the PRDM9 A variant particularly common in Europeans. We show that population diversity can reveal a second class of hotspots specifically activated by PRDM9 variants common in Africans but rare in Europeans. These African-enhanced hotspots nevertheless share very similar properties with their counterparts activated by the A variant. The specificity of hotspot activation is such that individuals with differing PRDM9 genotypes, even within the same population, can use substantially if not completely different sets of hotspots. Each African-enhanced hotspot is activated by a distinct spectrum of PRDM9 variants, despite the fact that all are predicted to bind the same sequence motif. This differential activation points to complex interactions between the zinc-finger array and hotspots and identifies features of the array that might be important in controlling hotspot activity.


Assuntos
População Negra/genética , Variação Genética , Histona-Lisina N-Metiltransferase/genética , Alelos , Sequência de Aminoácidos , Sequência de Bases , Troca Genética , DNA/genética , Conversão Gênica , Frequência do Gene , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Desequilíbrio de Ligação , Masculino , Meiose/genética , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Recombinação Genética , Espermatozoides/metabolismo , População Branca/genética
4.
Nat Genet ; 42(10): 859-63, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20818382

RESUMO

PRDM9 has recently been identified as a likely trans regulator of meiotic recombination hot spots in humans and mice. PRDM9 contains a zinc finger array that, in humans, can recognize a short sequence motif associated with hot spots, with binding to this motif possibly triggering hot-spot activity via chromatin remodeling. We now report that human genetic variation at the PRDM9 locus has a strong effect on sperm hot-spot activity, even at hot spots lacking the sequence motif. Subtle changes within the zinc finger array can create hot-spot nonactivating or enhancing variants and can even trigger the appearance of a new hot spot, suggesting that PRDM9 is a major global regulator of hot spots in humans. Variation at the PRDM9 locus also influences aspects of genome instability-specifically, a megabase-scale rearrangement underlying two genomic disorders as well as minisatellite instability-implicating PRDM9 as a risk factor for some pathological genome rearrangements.


Assuntos
Variação Genética/genética , Instabilidade Genômica , Histona-Lisina N-Metiltransferase/genética , Meiose/genética , Recombinação Genética/genética , Alelos , Animais , Rearranjo Gênico , Genoma Humano , Homozigoto , Humanos , Masculino , Camundongos , Dados de Sequência Molecular , Espermatozoides
5.
Proc Natl Acad Sci U S A ; 105(30): 10471-6, 2008 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-18650392

RESUMO

Population diversity data have recently provided profound, albeit inferential, insights into meiotic recombination across the human genome, revealing a landscape dominated by thousands of cross-over hotspots. However, very few of these putative hotspots have been directly analyzed for cross-over activity. We now describe a search for very active hotspots, by using extreme breakdown of marker association as a guide for high-resolution sperm cross-over analysis. This strategy has led to the isolation of the most active cross-over hotspots yet described. Their morphology, sequence attributes, and cross-over processes are very similar to those seen at less active hotspots, but their activity in sperm is poorly predicted from population diversity information. Several of these hotspots showed evidence for biased gene conversion accompanying cross-over, in some cases associated with variation between men in cross-over activity and with two hotspots showing complete presence/absence polymorphism in different men. Hotspot polymorphism is very common at less active hotspots but curiously was not seen at any of the most active hotspots. This contrasts with the prediction that extreme hotspots should be the most vulnerable to attenuation by meiotic drive in favor of mutations that suppress recombination and should therefore show rapid rate evolution and thus variation in activity between men. Finally, these very intense hotspots provide a valuable resource for dissecting meiotic recombination processes and pathways in humans.


Assuntos
Troca Genética , Marcadores Genéticos , Genoma Humano , Espermatozoides/fisiologia , Evolução Molecular , Variação Genética , Genótipo , Haplótipos , Humanos , Desequilíbrio de Ligação , Masculino , Modelos Genéticos , Polimorfismo Genético , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...