Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 13(11)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38004348

RESUMO

The purine nucleobases adenine and guanine are complex organic molecules that are essential for life. Despite their ubiquitous presence on Earth, purines have yet to be detected in observations of astronomical environments. This work therefore proposes to study the infrared spectra of purines linked to terrestrial biochemical processes under conditions analogous to those found in the interstellar medium. The infrared spectra of adenine and guanine, both in neat form and embedded within an ice made of H2O:NH3:CH4:CO:CH3OH (10:1:1:1:1), were analysed with the aim of determining which bands attributable to adenine and/or guanine can be observed in the infrared spectrum of an astrophysical ice analogue rich in other volatile species known to be abundant in dense molecular clouds. The spectrum of adenine and guanine mixed together was also analysed. This study has identified three purine nucleobase infrared absorption bands that do not overlap with bands attributable to the volatiles that are ubiquitous in the dense interstellar medium. Therefore, these three bands, which are located at 1255, 940, and 878 cm-1, are proposed as an infrared spectral signature for adenine, guanine, or a mixture of these molecules in astrophysical ices. All three bands have integrated molar absorptivity values (ψ) greater than 4 km mol-1, meaning that they should be readily observable in astronomical targets. Therefore, if these three bands were to be observed together in the same target, then it is possible to propose the presence of a purine molecule (i.e., adenine or guanine) there.

2.
J Phys Chem A ; 126(12): 2007-2017, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35302766

RESUMO

As of early 2022, only six species bearing an N-O bond have been detected toward cold molecular clouds and regions of star formation. It is not clear yet if the small number of N-O bond species found in the interstellar medium so far stems from physical and technological limitations of astronomical detection techniques, or whether in fact molecules that bear an N-O bond are for some reason rare in these objects of the interstellar medium. Astronomical N-O bearing molecules are important because they are part of astrochemical models which propose that they are precursors of hydroxylamine (NH2OH), a species linked to the formation of prebiotic amino acids in space. The aim of this study is the better understanding of the open question of the interstellar synthesis of N-O bearing species. We have analyzed by infrared spectroscopy an astrophysically relevant polar ice mixture of N2O:H2O processed by 90 MeV 136Xe23+ ions, which can mimic the physicochemical processes triggered by cosmic rays in water-covered interstellar ice grains. The results show the formation of N2O3 and of H2O2, but no HN-O species of any kind were detected. Such findings are discussed in light of recent studies from our group and from the literature.


Assuntos
Peróxido de Hidrogênio , Íons , Espectrofotometria Infravermelho/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA