Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 6165, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36257940

RESUMO

Rashba interfaces have emerged as promising platforms for spin-charge interconversion through the direct and inverse Edelstein effects. Notably, oxide-based two-dimensional electron gases display a large and gate-tunable conversion efficiency, as determined by transport measurements. However, a direct visualization of the Rashba-split bands in oxide two-dimensional electron gases is lacking, which hampers an advanced understanding of their rich spin-orbit physics. Here, we investigate KTaO3 two-dimensional electron gases and evidence their Rashba-split bands using angle resolved photoemission spectroscopy. Fitting the bands with a tight-binding Hamiltonian, we extract the effective Rashba coefficient and bring insight into the complex multiorbital nature of the band structure. Our calculations reveal unconventional spin and orbital textures, showing compensation effects from quasi-degenerate band pairs which strongly depend on in-plane anisotropy. We compute the band-resolved spin and orbital Edelstein effects, and predict interconversion efficiencies exceeding those of other oxide two-dimensional electron gases. Finally, we suggest design rules for Rashba systems to optimize spin-charge interconversion performance.

2.
Nano Lett ; 22(1): 65-72, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34914397

RESUMO

Quantum materials harbor a cornucopia of exotic transport phenomena challenging our understanding of condensed matter. Among these, a giant, nonsaturating linear magnetoresistance (MR) has been reported in various systems, from Weyl semimetals to topological insulators. Its origin is often ascribed to unusual band structure effects, but it may also be caused by extrinsic sample disorder. Here, we report a very large linear MR in a SrTiO3 two-dimensional electron gas and, by combining transport measurements with electron spectromicroscopy, show that it is caused by nanoscale inhomogeneities that are self-organized during sample growth. Our data also reveal semiclassical Sondheimer oscillations arising from interferences between helicoidal electron trajectories, from which we determine the 2DEG thickness. Our results bring insight into the origin of linear MR in quantum materials, expand the range of functionalities of oxide 2DEGs, and suggest exciting routes to explore the interaction of linear MR with features like Rashba spin-orbit coupling.

3.
Adv Mater ; 33(43): e2102102, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34499763

RESUMO

Oxide interfaces exhibit a broad range of physical effects stemming from broken inversion symmetry. In particular, they can display non-reciprocal phenomena when time reversal symmetry is also broken, e.g., by the application of a magnetic field. Examples include the direct and inverse Edelstein effects (DEE, IEE) that allow the interconversion between spin currents and charge currents. The DEE and IEE have been investigated in interfaces based on the perovskite SrTiO3 (STO), albeit in separate studies focusing on one or the other. The demonstration of these effects remains mostly elusive in other oxide interface systems despite their blossoming in the last decade. Here, the observation of both the DEE and IEE in a new interfacial two-dimensional electron gas (2DEG) based on the perovskite oxide KTaO3 is reported. 2DEGs are generated by the simple deposition of Al metal onto KTaO3 single crystals, characterized by angle-resolved photoemission spectroscopy and magnetotransport, and shown to display the DEE through unidirectional magnetoresistance and the IEE by spin-pumping experiments. Their spin-charge interconversion efficiency is then compared with that of STO-based interfaces, related to the 2DEG electronic structure, and perspectives are given for the implementation of KTaO3 2DEGs into spin-orbitronic devices is compared.

4.
Sci Rep ; 10(1): 10256, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32581302

RESUMO

The Josephson junction (JJ) is the corner stone of superconducting electronics and quantum information processing. While the technology for fabricating low Tc JJ is mature and delivers quantum circuits able to reach the "quantum supremacy", the fabrication of reproducible and low-noise high-Tc JJ is still a challenge to be taken up. Here we report on noise properties at RF frequencies of recently introduced high-Tc Josephson nano-junctions fabricated by mean of a Helium ion beam focused at sub-nanometer scale on a YBa2Cu3O7 thin film. We show that their current-voltage characteristics follow the standard Resistively-Shunted-Junction (RSJ) circuit model, and that their characteristic frequency fc = (2e/h)IcRn reaches ~300 GHz at low temperature. Using the "detector response" method, we evidence that the Josephson oscillation linewidth is only limited by the thermal noise in the RSJ model for temperature ranging from T ~ 20 K to 75 K. At lower temperature and for the highest He irradiation dose, the shot noise contribution must also be taken into account when approaching the tunneling regime. We conclude that these Josephson nano-junctions present the lowest noise level possible, which makes them very promising for future applications in the microwave and terahertz regimes.

5.
Nat Mater ; 18(11): 1187-1193, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31501554

RESUMO

While spintronics has traditionally relied on ferromagnetic metals as spin generators and detectors, spin-orbitronics exploits the efficient spin-charge interconversion enabled by spin-orbit coupling in non-magnetic systems. Although the Rashba picture of split parabolic bands is often used to interpret such experiments, it fails to explain the largest conversion effects and their relationship with the electronic structure. Here, we demonstrate a very large spin-to-charge conversion effect in an interface-engineered, high-carrier-density SrTiO3 two-dimensional electron gas and map its gate dependence on the band structure. We show that the conversion process is amplified by enhanced Rashba-like splitting due to orbital mixing and in the vicinity of avoided band crossings with topologically non-trivial order. Our results indicate that oxide two-dimensional electron gases are strong candidates for spin-based information readout in new memory and transistor designs. Our results also emphasize the promise of topology as a new ingredient to expand the scope of complex oxides for spintronics.

6.
Nat Commun ; 10(1): 126, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30631078

RESUMO

The transmission of Cooper pairs between two weakly coupled superconductors produces a superfluid current and a phase difference; the celebrated Josephson effect. Because of time-reversal and parity symmetries, there is no Josephson current without a phase difference between two superconductors. Reciprocally, when those two symmetries are broken, an anomalous supercurrent can exist in the absence of phase bias or, equivalently, an anomalous phase shift φ0 can exist in the absence of a superfluid current. We report on the observation of an anomalous phase shift φ0 in hybrid Josephson junctions fabricated with the topological insulator Bi2Se3 submitted to an in-plane magnetic field. This anomalous phase shift φ0 is observed directly through measurements of the current-phase relationship in a Josephson interferometer. This result provides a direct measurement of the spin-orbit coupling strength and open new possibilities for phase-controlled Josephson devices made from materials with strong spin-orbit coupling.

7.
Nat Commun ; 6: 6028, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25583368

RESUMO

The discovery of two-dimensional electron gases (2DEGs) at oxide interfaces-involving electrons in narrow d-bands-has broken new ground, enabling the access to correlated states that are unreachable in conventional semiconductors based on s- and p- electrons. There is a growing consensus that emerging properties at these novel quantum wells-such as 2D superconductivity and magnetism-are intimately connected to specific orbital symmetries in the 2DEG sub-band structure. Here we show that crystal orientation allows selective orbital occupancy, disclosing unprecedented ways to tailor the 2DEG properties. By carrying out electrostatic gating experiments in LaAlO3/SrTiO3 wells of different crystal orientations, we show that the spatial extension and anisotropy of the 2D superconductivity and the Rashba spin-orbit field can be largely modulated by controlling the 2DEG sub-band filling. Such an orientational tuning expands the possibilities for electronic engineering of 2DEGs at LaAlO3/SrTiO3 interfaces.

8.
Phys Rev Lett ; 110(17): 173902, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23679729

RESUMO

We demonstrate full frequency conversion in the microwave domain using a Josephson three-wave mixing device pumped at the difference between the frequencies of its fundamental eigenmodes. By measuring the signal output as a function of the intensity and phase of the three input signal, idler, and pump tones, we show that the device functions as a controllable three-wave beam splitter or combiner for propagating microwave modes at the single-photon level, in accordance with theory. Losses at the full conversion point are found to be less than 10(-2). Potential applications of the device include quantum information transduction and realization of an ultrasensitive interferometer with controllable feedback.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...