Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Monit Comput ; 37(4): 1095-1102, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37166694

RESUMO

Thermodilution is the gold standard for cardiac output measurement in critically ill patients. Its application in extracorporeal therapy is limited, as a portion of the thermal indicator is drawn into the extracorporeal circuit. The behaviour of thermodilution signals in extracorporeal circuits is unknown. We investigated thermodilution curves within a closed-circuit and assessed the impact of injection volume, flow and distance on the behaviour of the thermodilution signals and catheter constants. We injected 3, 5, 7 and 10 ml of thermal indicator into a heated closed circuit. Thermistors at distances of 40, 60, 80, and 100 cm from the injection port recorded the thermodilution signals (at flow settings of 0.5, 1, 1.5, and 2 L/min). Area under the curve (AUC), rise time, exponential decay and catheter constants were analysed. Linear mixed-effects models were used to evaluate the impact of circuit flow, distance and injection volume. Catheter positioning did not influence AUC (78 injections). Catheter constants were independent of flow, injection volume or distance to the injection port. The distance to the injection port increased peak temperature and rise time and decreased exponential time constant significantly. The distance to the injection port did not influence catheter constants, but the properties of the thermodilution signal itself. This may influence measurements that depend on the exponential decay of the thermodilution signal such as right ventricular ejection fraction.


Assuntos
Termodiluição , Função Ventricular Direita , Humanos , Volume Sistólico , Catéteres , Débito Cardíaco
2.
Am J Physiol Lung Cell Mol Physiol ; 324(2): L102-L113, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36511508

RESUMO

Assessment of native cardiac output during extracorporeal circulation is challenging. We assessed a modified Fick principle under conditions such as dead space and shunt in 13 anesthetized swine undergoing centrally cannulated veno-arterial extracorporeal membrane oxygenation (V-A ECMO, 308 measurement periods) therapy. We assumed that the ratio of carbon dioxide elimination (V̇co2) or oxygen uptake (V̇o2) between the membrane and native lung corresponds to the ratio of respective blood flows. Unequal ventilation/perfusion (V̇/Q̇) ratios were corrected towards unity. Pulmonary blood flow was calculated and compared to an ultrasonic flow probe on the pulmonary artery with a bias of 99 mL/min (limits of agreement -542 to 741 mL/min) with blood content V̇o2 and no-shunt, no-dead space conditions, which showed good trending ability (least significant change from 82 to 129 mL). Shunt conditions led to underestimation of native pulmonary blood flow (bias -395, limits of agreement -1,290 to 500 mL/min). Bias and trending further depended on the gas (O2, CO2) and measurement approach (blood content vs. gas phase). Measurements in the gas phase increased the bias (253 [LoA -1,357 to 1,863 mL/min] for expired V̇o2 bias 482 [LoA -760 to 1,724 mL/min] for expired V̇co2) and could be improved by correction of V̇/Q̇ inequalities. Our results show that common assumptions of the Fick principle in two competing circulations give results with adequate accuracy and may offer a clinically applicable tool. Precision depends on specific conditions. This highlights the complexity of gas exchange in membrane lungs and may further deepen the understanding of V-A ECMO.


Assuntos
Oxigenação por Membrana Extracorpórea , Troca Gasosa Pulmonar , Animais , Suínos , Troca Gasosa Pulmonar/fisiologia , Oxigenação por Membrana Extracorpórea/métodos , Pulmão/irrigação sanguínea , Débito Cardíaco/fisiologia , Artéria Pulmonar , Dióxido de Carbono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...