Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 20(4): e1011139, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38669217

RESUMO

As essential components of gene expression networks, transcription factors regulate neural circuit assembly. The homeobox transcription factor encoding gene, gs homeobox 1 (gsx1), is expressed in the developing visual system; however, no studies have examined its role in visual system formation. In zebrafish, retinal ganglion cell (RGC) axons that transmit visual information to the brain terminate in ten arborization fields (AFs) in the optic tectum (TeO), pretectum (Pr), and thalamus. Pretectal AFs (AF1-AF9) mediate distinct visual behaviors, yet we understand less about their development compared to AF10 in the TeO. Using gsx1 zebrafish mutants, immunohistochemistry, and transgenic lines, we observed that gsx1 is required for vesicular glutamate transporter, Tg(slc17a6b:DsRed), expression in the Pr, but not overall neuron number. gsx1 mutants have normal eye morphology, yet they exhibit impaired visual ability during prey capture. RGC axon volume in the gsx1 mutant Pr and TeO is reduced, and AF7 that is active during feeding is missing which is consistent with reduced hunting performance. Timed laser ablation of Tg(slc17a6b:DsRed)-positive cells reveals that they are necessary for AF7 formation. This work is the first to implicate gsx1 in establishing cell identity and functional neural circuits in the visual system.


Assuntos
Animais Geneticamente Modificados , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio , Células Ganglionares da Retina , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Axônios/metabolismo , Axônios/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Mutação , Células Ganglionares da Retina/metabolismo , Colículos Superiores/metabolismo , Colículos Superiores/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vias Visuais/crescimento & desenvolvimento , Vias Visuais/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
Zebrafish ; 21(2): 80-91, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37449810

RESUMO

Early research experiences positively affect students' interest in STEM careers, and develop practical science and critical thinking skills. However, outreach opportunities are not equally accessible for all students. In states like West Virginia, where many students live in rural Appalachian communities, opportunities for engaging in STEM experiences are limited. In addition, rural teachers may not be equipped to provide authentic research experiences for students due to lack of resources or support. For many students in West Virginia, the Health Sciences and Technology Academy (HSTA) is a major opportunity for STEM engagement. Since its inception in 1998, HSTA has spread to 26 of 55 counties in West Virginia. The program recruits first-generation, low-socioeconomic status, rurally living, and African American high school students who are under-represented in STEM fields. Our research laboratory partnered with HSTA to implement an innovative, hands-on research camp using zebrafish for students participating in their annual junior-level biomedical sciences summer camp. Our camp was held in-person and adapted to an online format during the Covid-19 pandemic. We used pre-post surveys in both camps to assess impacts on science confidence and to collect information about general perceptions of zebrafish, research, and STEM fields. We found that students participating in the in-person and online camps experienced similar overall gains in science confidence. We also identified strong interest in zebrafish, research, and STEM degrees among online students. Online students did not prefer virtual learning experiences; however, they still enjoyed our camp. We also surveyed high school teachers volunteering for HSTA to identify factors that would encourage use of zebrafish in classrooms. The most prominent needs include classroom supplies, experience, and funding. Our successful science-education partnership demonstrates that zebrafish research experiences foster positive outcomes for under-represented students, and can inform future outreach efforts and collaborations with teachers.


Assuntos
Perciformes , Peixe-Zebra , Animais , Humanos , West Virginia , Pandemias , Estudantes , Aprendizagem
3.
Dev Dyn ; 252(3): 377-399, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36184733

RESUMO

BACKGROUND: Homeobox transcription factor encoding genes, genomic screen homeobox 1 and 2 (gsx1 and gsx2), are expressed during neurodevelopment in multiple vertebrates. However, we have limited knowledge of the dynamic expression of these genes through developmental time and the gene networks that they regulate in zebrafish. RESULTS: We confirmed that gsx1 is expressed initially in the hindbrain and diencephalon and later in the optic tectum, pretectum, and cerebellar plate. gsx2 is expressed in the early telencephalon and later in the pallium and olfactory bulb. gsx1 and gsx2 are co-expressed in the hypothalamus, preoptic area, and hindbrain, however, rarely co-localize in the same cells. gsx1 and gsx2 mutant zebrafish were made with TALENs. gsx1 mutants exhibit stunted growth, however, they survive to adulthood and are fertile. gsx2 mutants experience swim bladder inflation failure that prevents survival. We also observed significantly reduced expression of multiple forebrain patterning distal-less homeobox genes in mutants, and expression of foxp2 was not significantly affected. CONCLUSIONS: This work provides novel tools with which other target genes and functions of Gsx1 and Gsx2 can be characterized across the central nervous system to better understand the unique and overlapping roles of these highly conserved transcription factors.


Assuntos
Proteínas de Homeodomínio , Peixe-Zebra , Animais , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Bulbo Olfatório/metabolismo , Telencéfalo/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
4.
Drug Test Anal ; 14(6): 1116-1129, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35128825

RESUMO

Valerylfentanyl, a novel synthetic opioid less potent than fentanyl, has been reported in biological samples, but there are limited studies on its pharmacokinetic properties. The goal of this study was to elucidate the metabolism of valerylfentanyl using an in vitro human liver microsome (HLM) model compared with an in vivo zebrafish model. Nineteen metabolites were detected with N-dealkylation-valeryl norfentanyl and hydroxylation as the major metabolic pathways. The major metabolites in HLMs were also detected in 30 day postfertilization zebrafish. An authentic liver specimen that tested positive for valerylfentanyl, among other opioids and stimulants, revealed the presence of a metabolite that shared transitions and retention time as the hydroxylated metabolite of valerylfentanyl but could not be confirmed without an authentic standard. 4-Anilino-N-phenethylpiperidine (4-ANPP), a common metabolite to other fentanyl analogs, was also detected. In this study, we elucidated the metabolic pathway of valerylfentanyl, confirmed two metabolites using standards, and demonstrated that the zebrafish model produced similar metabolites to the HLM model for opioids.


Assuntos
Analgésicos Opioides , Microssomos Hepáticos , Analgésicos Opioides/metabolismo , Animais , Fentanila , Humanos , Larva/metabolismo , Microssomos Hepáticos/metabolismo , Peixe-Zebra/metabolismo
5.
J Appl Toxicol ; 42(4): 706-714, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34647333

RESUMO

The increased abuse of novel drugs has created a critical need for cheap and rapid in vivo models to understand whole organism drug-induced toxicity and metabolic impacts. One such model is zebrafish, which share many similarities to human. Assays have been developed for behavioral, toxicity, and metabolism elucidation following chemical exposure. The zebrafish model provides the advantage of assessing these parameters within a single study. Previous zebrafish studies have evaluated the behavioral effects of fentanyl, but not developmental toxicity and its relation to metabolism. In this study, we evaluate the effects of fentanyl on the development of wild-type (TL strain) zebrafish and its metabolism over 4 days. Fertilized eggs were exposed to six concentrations of fentanyl (0.01, 0.1, 1, 10, 50, and 100 µM) through embryo media incubated at 28-29°C. Observations included egg coagulation, somite formation, heartbeat, tail and yolk morphology, pericardial formation, and swim bladder inflation. The incubation media was analyzed for the presence of metabolites using a targeted metabolomics approach. Fentanyl concentration caused significant effects on survival and development, with notable defects to the tail, yolk, and pericardium at 50 and 100 µM. Despropionyl fentanyl (4-ANPP), ß-hydroxy fentanyl, and norfentanyl were detected in zebrafish larvae. We present a single in vivo model to assess toxicity and metabolism of fentanyl exposure in a vertebrate model system. Our findings provide a foundation for further investigations into fentanyl's mechanism of action and translation to human drug exposure.


Assuntos
Fentanila , Peixe-Zebra , Animais , Embrião não Mamífero , Fentanila/toxicidade , Larva , Zigoto
6.
Front Behav Neurosci ; 15: 777778, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938167

RESUMO

Innate behavioral biases such as human handedness are a ubiquitous form of inter-individual variation that are not strictly hardwired into the genome and are influenced by diverse internal and external cues. Yet, genetic and environmental factors modulating behavioral variation remain poorly understood, especially in vertebrates. To identify genetic and environmental factors that influence behavioral variation, we take advantage of larval zebrafish light-search behavior. During light-search, individuals preferentially turn in leftward or rightward loops, in which directional bias is sustained and non-heritable. Our previous work has shown that bias is maintained by a habenula-rostral PT circuit and genes associated with Notch signaling. Here we use a medium-throughput recording strategy and unbiased analysis to show that significant individual to individual variation exists in wildtype larval zebrafish turning preference. We classify stable left, right, and unbiased turning types, with most individuals exhibiting a directional preference. We show unbiased behavior is not due to a loss of photo-responsiveness but reduced persistence in same-direction turning. Raising larvae at elevated temperature selectively reduces the leftward turning type and impacts rostral PT neurons, specifically. Exposure to conspecifics, variable salinity, environmental enrichment, and physical disturbance does not significantly impact inter-individual turning bias. Pharmacological manipulation of Notch signaling disrupts habenula development and turn bias individuality in a dose dependent manner, establishing a direct role of Notch signaling. Last, a mutant allele of a known Notch pathway affecter gene, gsx2, disrupts turn bias individuality, implicating that brain regions independent of the previously established habenula-rostral PT likely contribute to inter-individual variation. These results establish that larval zebrafish is a powerful vertebrate model for inter-individual variation with established neural targets showing sensitivity to specific environmental and gene signaling disruptions. Our results provide new insight into how variation is generated in the vertebrate nervous system.

7.
PLoS Biol ; 17(10): e3000480, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31613896

RESUMO

Many species execute ballistic escape reactions to avoid imminent danger. Despite fast reaction times, responses are often highly regulated, reflecting a trade-off between costly motor actions and perceived threat level. However, how sensory cues are integrated within premotor escape circuits remains poorly understood. Here, we show that in zebrafish, less precipitous threats elicit a delayed escape, characterized by flexible trajectories, which are driven by a cluster of 38 prepontine neurons that are completely separate from the fast escape pathway. Whereas neurons that initiate rapid escapes receive direct auditory input and drive motor neurons, input and output pathways for delayed escapes are indirect, facilitating integration of cross-modal sensory information. These results show that rapid decision-making in the escape system is enabled by parallel pathways for ballistic responses and flexible delayed actions and defines a neuronal substrate for hierarchical choice in the vertebrate nervous system.


Assuntos
Reação de Fuga/fisiologia , Córtex Motor/fisiologia , Neurônios Motores/fisiologia , Reconhecimento Fisiológico de Modelo/fisiologia , Ponte/fisiologia , Peixe-Zebra/fisiologia , Animais , Tomada de Decisões/fisiologia , Larva/fisiologia , Córtex Motor/citologia , Neurônios Motores/citologia , Ponte/citologia , Tempo de Reação/fisiologia
8.
Curr Biol ; 28(16): 2527-2535.e8, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30078569

RESUMO

Filtering mechanisms prevent a continuous stream of sensory information from swamping perception, leading to diminished focal attention and cognitive processing. Mechanisms for sensory gating are commonly studied using prepulse inhibition, a paradigm that measures the regulated transmission of auditory information to the startle circuit; however, the underlying neuronal pathways are unresolved. Using large-scale calcium imaging, optogenetics, and laser ablations, we reveal a cluster of 30 morphologically identified neurons in zebrafish that suppress the transmission of auditory signals during prepulse inhibition. These neurons project to a key sensorimotor interface in the startle circuit-the termination zone of auditory afferents on the dendrite of a startle command neuron. Direct measurement of auditory nerve neurotransmitter release revealed selective presynaptic inhibition of sensory transmission to the startle circuit, sparing signaling to other brain regions. Our results provide the first cellular resolution circuit for prepulse inhibition in a vertebrate, revealing a central role for presynaptic gating of sensory information to a brainstem motor circuit.


Assuntos
Percepção Auditiva/fisiologia , Inibição Pré-Pulso/fisiologia , Filtro Sensorial/fisiologia , Transmissão Sináptica/fisiologia , Peixe-Zebra/fisiologia , Animais , Tronco Encefálico/fisiologia , Cálcio/fisiologia , Terapia a Laser , Neurônios , Optogenética , Reflexo de Sobressalto/fisiologia
9.
Bioorg Med Chem Lett ; 27(9): 2029-2037, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28320616

RESUMO

In this report we utilized zebrafish (Danio rerio) embryos in a phenotypical high-content screen (HCS) to identify novel leads in a cancer drug discovery program. We initially validated our HCS model using the flavin adenosine dinucleotide (FAD) containing endoplasmic reticulum (ER) enzyme, endoplasmic reticulum oxidoreductase (ERO1) inhibitor EN460. EN460 showed a dose response effect on the embryos with a dose of 10µM being significantly lethal during early embryonic development. The HCS campaign which employed a small library identified a promising lead compound, a naphthyl-benzoic acid derivative coined compound 1 which had significant dosage and temporally dependent effects on notochord and muscle development in zebrafish embryos. Screening a 369 kinase member panel we show that compound 1 is a PIM3 kinase inhibitor (IC50=4.078µM) and surprisingly a DAPK1 kinase agonist/activator (EC50=39.525µM). To our knowledge this is the first example of a small molecule activating DAPK1 kinase. We provide a putative model for increased phosphate transfer in the ATP binding domain when compound 1 is virtually docked with DAPK1. Our data indicate that observable phenotypical changes can be used in future zebrafish screens to identify compounds acting via similar molecular signaling pathways.


Assuntos
Descoberta de Drogas/métodos , Embrião não Mamífero/efeitos dos fármacos , Ativadores de Enzimas/química , Ativadores de Enzimas/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Peixe-Zebra/embriologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Ácido Benzoico/química , Ácido Benzoico/farmacologia , Proteínas Quinases Associadas com Morte Celular/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Embrião não Mamífero/enzimologia , Ativação Enzimática/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/metabolismo
10.
Nucleic Acids Res ; 43(7): e48, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25628360

RESUMO

Many genetic manipulations are limited by difficulty in obtaining adequate levels of protein expression. Bioinformatic and experimental studies have identified nucleotide sequence features that may increase expression, however it is difficult to assess the relative influence of these features. Zebrafish embryos are rapidly injected with calibrated doses of mRNA, enabling the effects of multiple sequence changes to be compared in vivo. Using RNAseq and microarray data, we identified a set of genes that are highly expressed in zebrafish embryos and systematically analyzed for enrichment of sequence features correlated with levels of protein expression. We then tested enriched features by embryo microinjection and functional tests of multiple protein reporters. Codon selection, releasing factor recognition sequence and specific introns and 3' untranslated regions each increased protein expression between 1.5- and 3-fold. These results suggested principles for increasing protein yield in zebrafish through biomolecular engineering. We implemented these principles for rational gene design in software for codon selection (CodonZ) and plasmid vectors incorporating the most active non-coding elements. Rational gene design thus significantly boosts expression in zebrafish, and a similar approach will likely elevate expression in other animal models.


Assuntos
Perfilação da Expressão Gênica , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Western Blotting , Códon , Biologia Computacional , Microinjeções , Dados de Sequência Molecular , Biossíntese de Proteínas
11.
J Neurophysiol ; 112(4): 834-44, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24848468

RESUMO

Rapid escape swims in fish are initiated by the Mauthner cells, giant reticulospinal neurons with unique specializations for swift responses. The Mauthner cells directly activate motoneurons and facilitate predator detection by integrating acoustic, mechanosensory, and visual stimuli. In addition, larval fish show well-coordinated escape responses when exposed to electric field pulses (EFPs). Sensitization of the Mauthner cell by genetic overexpression of the voltage-gated sodium channel SCN5 increased EFP responsiveness, whereas Mauthner ablation with an engineered variant of nitroreductase with increased activity (epNTR) eliminated the response. The reaction time to EFPs is extremely short, with many responses initiated within 2 ms of the EFP. Large neurons, such as Mauthner cells, show heightened sensitivity to extracellular voltage gradients. We therefore tested whether the rapid response to EFPs was due to direct activation of the Mauthner cells, bypassing delays imposed by stimulus detection and transmission by sensory cells. Consistent with this, calcium imaging indicated that EFPs robustly activated the Mauthner cell but only rarely fired other reticulospinal neurons. Further supporting this idea, pharmacological blockade of synaptic transmission in zebrafish did not affect Mauthner cell activity in response to EFPs. Moreover, Mauthner cells transgenically expressing a tetrodotoxin (TTX)-resistant voltage-gated sodium channel retained responses to EFPs despite TTX suppression of action potentials in the rest of the brain. We propose that EFPs directly activate Mauthner cells because of their large size, thereby driving ultrarapid escape responses in fish.


Assuntos
Potenciais de Ação , Neurônios/fisiologia , Tempo de Reação , Natação , Animais , Cálcio/metabolismo , Characidae , Cyprinidae , Estimulação Elétrica , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Neurônios/metabolismo , Oryzias , Rombencéfalo/citologia , Rombencéfalo/fisiologia , Bloqueadores dos Canais de Sódio/farmacologia , Transmissão Sináptica , Tetrodotoxina/farmacologia , Peixe-Zebra
12.
Dis Model Mech ; 7(2): 289-98, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24203884

RESUMO

An essential step in muscle fiber maturation is the assembly of highly ordered myofibrils that are required for contraction. Much remains unknown about the molecular mechanisms governing the formation of the contractile apparatus. We identified an early embryonic motility mutant in zebrafish caused by integration of a transgene into the pseudophosphatase dual specificity phosphatase 27 (dusp27) gene. dusp27 mutants exhibit near complete paralysis at embryonic and larval stages, producing extremely low levels of spontaneous coiling movements and a greatly diminished touch response. Loss of dusp27 does not prevent somitogenesis but results in severe disorganization of the contractile apparatus in muscle fibers. Sarcomeric structures in mutants are almost entirely absent and only rare triads are observed. These findings are the first to implicate a functional role of dusp27 as a gene required for myofiber maturation and provide an animal model for analyzing the mechanisms governing myofibril assembly.


Assuntos
Fosfatases de Especificidade Dupla/genética , Embrião não Mamífero/enzimologia , Embrião não Mamífero/patologia , Movimento , Mutação/genética , Miofibrilas/patologia , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Fosfatases de Especificidade Dupla/química , Fosfatases de Especificidade Dupla/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Dados de Sequência Molecular , Morfolinos/farmacologia , Movimento/efeitos dos fármacos , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Rápida/patologia , Miofibrilas/efeitos dos fármacos , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo
13.
Curr Biol ; 22(21): 2042-7, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23000151

RESUMO

Most vertebrates process visual information using elaborately structured photosensory tissues, including the eyes and pineal. However, there is strong evidence that other tissues can detect and respond to photic stimuli. Many reports suggest that photosensitive elements exist within the brain itself and influence physiology and behavior; however, a long-standing puzzle has been the identity of the neurons and photoreceptor molecules involved. We tested whether light cues influence behavior in zebrafish larvae through deep brain photosensors. We found that larvae lacking eyes and pineal perform a simple light-seeking behavior triggered by loss of illumination ("dark photokinesis"). Neuroanatomical considerations prompted us to test orthopedia (otpa)-deficient fish, which show a profound reduction in dark photokinesis. Using targeted genetic ablations, we narrowed the photosensitive region to neurons in the preoptic area. Neurons in this region express several photoreceptive molecules, but expression of the melanopsin opn4a is selectively lost in otpa mutants, suggesting that opn4a mediates dark photokinesis. Our findings shed light on the identity and function of deep brain photoreceptors and suggest that otpa specifies an ancient population of sensory neurons that mediate behavioral responses to light.


Assuntos
Encéfalo/fisiologia , Estimulação Luminosa , Células Fotorreceptoras de Vertebrados/fisiologia , Percepção Visual , Peixe-Zebra/fisiologia , Animais , Comportamento Animal , Encéfalo/citologia , Escuridão , Larva/fisiologia , Atividade Motora , Natação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
14.
Front Neural Circuits ; 6: 110, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23293587

RESUMO

Transgenic technologies enable the manipulation and observation of circuits controlling behavior by permitting expression of genetically encoded reporter genes in neurons. Frequently though, neuronal expression is accompanied by transgene expression in non-neuronal tissues, which may preclude key experimental manipulations, including assessment of the contribution of neurons to behavior by ablation. To better restrict transgene expression to the nervous system in zebrafish larvae, we have used DNA sequences derived from the neuron-restrictive silencing element (NRSE). We find that one such sequence, REx2, when used in conjunction with several basal promoters, robustly suppresses transgene expression in non-neuronal tissues. Both in transient transgenic experiments and in stable enhancer trap lines, suppression is achieved without compromising expression within the nervous system. Furthermore, in REx2 enhancer trap lines non-neuronal expression can be de-repressed by knocking down expression of the NRSE binding protein RE1-silencing transcription factor (Rest). In one line, we show that the resulting pattern of reporter gene expression coincides with that of the adjacent endogenous gene, hapln3. We demonstrate that three common basal promoters are susceptible to the effects of the REx2 element, suggesting that this method may be useful for confining expression from many other promoters to the nervous system. This technique enables neural specific targeting of reporter genes and thus will facilitate the use of transgenic methods to manipulate circuit function in freely behaving larvae.

15.
Development ; 138(1): 75-85, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21115611

RESUMO

The transmembrane protein Brother of Cdo (Boc) has been implicated in Shh-mediated commissural axon guidance, and can both positively and negatively regulate Hedgehog (Hh) target gene transcription, however, little is known about in vivo requirements for Boc during vertebrate embryogenesis. The zebrafish umleitung (uml(ty54)) mutant was identified by defects in retinotectal axon projections. Here, we show that the uml locus encodes Boc and that Boc function is cell-autonomously required for Hh-mediated neural patterning. Our phenotypic analysis suggests that Boc is required as a positive regulator of Hh signaling in the spinal cord, hypothalamus, pituitary, somites and upper jaw, but that Boc might negatively regulate Hh signals in the lower jaw. This study reveals a role for Boc in ventral CNS cells that receive high levels of Hh and uncovers previously unknown roles for Boc in vertebrate embryogenesis.


Assuntos
Sistema Nervoso Central/embriologia , Proteínas Hedgehog/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Axônios/metabolismo , Códon sem Sentido/genética , Genótipo , Proteínas Hedgehog/genética , Imuno-Histoquímica , Hibridização In Situ , Hipófise/embriologia , Prosencéfalo/embriologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
16.
Genomics ; 91(2): 165-77, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18055165

RESUMO

The Hedgehog (Hh) signaling pathway plays critical instructional roles during embryonic development. Misregulation of Hh/Gli signaling is a major causative factor in human congenital disorders and in a variety of cancers. The zebrafish is a powerful genetic model for the study of Hh signaling during embryogenesis, as a large number of mutants that affect different components of the Hh/Gli signaling system have been identified. By performing global profiling of gene expression in different Hh/Gli gain- and loss-of-function scenarios we identified known (e.g., ptc1 and nkx2.2a) and novel Hh-regulated genes that are differentially expressed in embryos with altered Hh/Gli signaling function. By uncovering changes in tissue-specific gene expression, we revealed new embryological processes that are influenced by Hh signaling. We thus provide a comprehensive survey of Hh/Gli-regulated genes during embryogenesis and we identify new Hh-regulated genes that may be targets of misregulation during tumorigenesis.


Assuntos
Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Proteínas Oncogênicas/genética , Transativadores/genética , Animais , Perfilação da Expressão Gênica , Neoplasias/etiologia , Neoplasias/genética , Transdução de Sinais , Distribuição Tecidual , Peixe-Zebra , Proteína GLI1 em Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...