Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1128546, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37235026

RESUMO

Septoria leaf blotch is a foliar wheat disease controlled by a combination of plant genetic resistances and fungicides use. R-gene-based qualitative resistance durability is limited due to gene-for-gene interactions with fungal avirulence (Avr) genes. Quantitative resistance is considered more durable but the mechanisms involved are not well documented. We hypothesize that genes involved in quantitative and qualitative plant-pathogen interactions are similar. A bi-parental population of Zymoseptoria tritici was inoculated on wheat cultivar 'Renan' and a linkage analysis performed to map QTL. Three pathogenicity QTL, Qzt-I05-1, Qzt-I05-6 and Qzt-I07-13, were mapped on chromosomes 1, 6 and 13 in Z. tritici, and a candidate pathogenicity gene on chromosome 6 was selected based on its effector-like characteristics. The candidate gene was cloned by Agrobacterium tumefaciens-mediated transformation, and a pathology test assessed the effect of the mutant strains on 'Renan'. This gene was demonstrated to be involved in quantitative pathogenicity. By cloning a newly annotated quantitative-effect gene in Z. tritici that is effector-like, we demonstrated that genes underlying pathogenicity QTL can be similar to Avr genes. This opens up the previously probed possibility that 'gene-for-gene' underlies not only qualitative but also quantitative plant-pathogen interactions in this pathosystem.

2.
Toxins (Basel) ; 14(2)2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35202102

RESUMO

The levels of deoxynivalenol (DON)-a mycotoxin produced by Fusarium graminearum-in maize for food and feed are subject to European Union regulations. Obtaining a compliant harvest requires the identification of agronomic and climatic risk factors related to higher fungal contamination and DON production. A national, multiyear database for maize was created, based on field survey data collected from 2004 to 2020. This database contains information about agricultural practices, climatic sequences and DON content at harvest for a total of 2032 maize fields localized in the French maize-growing regions. A linear mixed-model approach highlighted the presence of borers, late harvest and inadequate crop residue management, normal-to-cold temperatures in March, humidity in August and the absence of a hot end of the maize development cycle with a dry August as creating conditions favoring maize contamination with DON. The various possible associations between these risky climatic conditions and agricultural practices were compared, grouped and ranked as related to very low to high DON concentrations. Some combinations may even exceed the regulatory threshold. The national prevention tool, created for producers and agricultural cooperatives, is informative and easy-to-use to control the sanitary quality of their harvest.


Assuntos
Agricultura/métodos , Contaminação de Alimentos , Tricotecenos/química , Tempo (Meteorologia) , Zea mays/química , União Europeia , França , Fusarium/metabolismo , Fatores de Risco , Tricotecenos/metabolismo
3.
Toxins (Basel) ; 13(3)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809408

RESUMO

The levels of fumonisins (FUMO)-mycotoxins produced by Fusarium verticillioides-in maize for food and feed are subject to European Union regulations. Compliance with the regulations requires the targeting of, among others, the agroclimatic factors influencing fungal contamination and FUMO production. Arvalis-Institut du végétal has created a national, multiyear database for maize, based on field survey data collected since 2003. This database contains information about agricultural practices, climatic conditions and FUMO concentrations at harvest for 738 maize fields distributed throughout French maize-growing regions. A linear mixed model approach highlights the presence of borers and the use of a late variety, high temperatures in July and October, and a water deficit during the maize cycle as creating conditions favoring maize contamination with Fusarium verticillioides. It is thus possible to target a combination of risk factors, consisting of this climatic sequence associated with agricultural practices of interest. The effects of the various possible agroclimatic combinations can be compared, grouped and classified as promoting very low to high FUMO concentrations, possibly exceeding the regulatory threshold. These findings should facilitate the creation of a national, informative and easy-to-use prevention tool for producers and agricultural cooperatives to manage the sanitary quality of their harvest.


Assuntos
Clima , Proteção de Cultivos , Contaminação de Alimentos/prevenção & controle , Microbiologia de Alimentos , Fumonisinas/análise , Fusarium/metabolismo , Zea mays/microbiologia , Irrigação Agrícola , Bases de Dados Factuais , França , Fumonisinas/toxicidade , Fusarium/crescimento & desenvolvimento , Estado de Hidratação do Organismo , Medição de Risco , Fatores de Risco , Temperatura , Fatores de Tempo
4.
Genes (Basel) ; 13(1)2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-35052440

RESUMO

Quantitative resistance is considered more durable than qualitative resistance as it does not involve major resistance genes that can be easily overcome by pathogen populations, but rather a combination of genes with a lower individual effect. This durability means that quantitative resistance could be an interesting tool for breeding crops that would not systematically require phytosanitary products. Quantitative resistance has yet to reveal all of its intricacies. Here, we delve into the case of the wheat/Septoria tritici blotch (STB) pathosystem. Using a population resulting from a cross between French cultivar Renan, generally resistant to STB, and Chinese Spring, a cultivar susceptible to the disease, we built an ultra-dense genetic map that carries 148,820 single nucleotide polymorphism (SNP) markers. Phenotyping the interaction was done with two different Zymoseptoria tritici strains with contrasted pathogenicities on Renan. A linkage analysis led to the detection of three quantitative trait loci (QTL) related to resistance in Renan. These QTL, on chromosomes 7B, 1D, and 5D, present with an interesting diversity as that on 7B was detected with both fungal strains, while those on 1D and 5D were strain-specific. The resistance on 7B was located in the region of Stb8 and the resistance on 1D colocalized with Stb19. However, the resistance on 5D was new, so further designated Stb20q. Several wall-associated kinases (WAK), nucleotide-binding and leucine-rich repeats (NB-LRR) type, and kinase domain carrying genes were present in the QTL regions, and some of them were expressed during the infection. These results advocate for a role of Stb genes in quantitative resistance and for resistance in the wheat/STB pathosystem being as a whole quantitative and polygenic.


Assuntos
Ascomicetos/fisiologia , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Triticum/imunologia , Ascomicetos/classificação , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Especificidade da Espécie , Transcriptoma , Triticum/genética , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...