Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 156: 106597, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810542

RESUMO

The skin, the outermost organ of the human body, is vital for sensing and responding to stimuli through mechanotransduction. It is constantly exposed to mechanical stress. Consequently, various mechanical therapies, including compression, massage, and microneedling, have become routine practices for skin healing and regeneration. However, these traditional methods require direct skin contact, restricting their applicability. To address this constraint, we developed shear wave stimulation (SWS), a contactless mechanical stimulation technique. The effectiveness of SWS was compared with that of a commercial compression bioreactor used on reconstructed skin at various stages of maturity. Despite the distinct stimulus conditions applied by the two methods, SWS yielded remarkable outcomes, similar to the effects of the compression bioreactor. It significantly increased the shear modulus of tissue-engineered skin, heightened the density of collagen and elastin fibers, and resulted in an augmentation of fibroblasts in terms of their number and length. Notably, SWS exhibited diverse effects in the low- and high-frequency modes, highlighting the importance of fine-tuning the stimulus intensity. These results unequivocally demonstrated the capability of SWS to enhance the mechanical functions of the skin in vitro, making it a promising option for addressing wound healing and stretch mark recovery.


Assuntos
Pele , Pele/citologia , Humanos , Estresse Mecânico , Engenharia Tecidual , Fenômenos Mecânicos , Fenômenos Biomecânicos , Fibroblastos/citologia , Animais , Colágeno , Resistência ao Cisalhamento , Elastina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...