Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891434

RESUMO

In this study, a solid masterbatch of starch-iodine complex with 6.7 wt.% iodine was prepared in pellet form using a ZSK-30 twin-screw extruder. Thermogravimetric (TGA) and isothermal TGA analysis of the pellets revealed that there was no significant loss of iodine due to sublimation during reactive extrusion. These solid pellets demonstrated antifungal properties when applied to strawberries via dip coating in an aqueous solution, extending their shelf life from two days to eight days, thereby reducing fungal growth and visual decay. Furthermore, the solid pellets displayed antibacterial activity against E. coli, as evidenced by the clear zone of inhibition observed in the Kirby-Bauer test. To enhance practical application, these pellets were further blended with PLA-PBAT film formulations at 10 and 18% by wt. to make blown films with effective iodine loadings of 0.7 and 1.3% by wt. These films showed superior antibacterial activity against E. coli compared with PLA control films and the commercial silver antimicrobial-containing films during direct inoculation tests as per ISO 22196. Tensile strength and elongation at break in machine direction (MD) for the starch-iodine-containing blown films were comparable to the control films in MD, but tensile strength was reduced to 37-40% in the transverse direction (TD). This was due to a non-uniform dispersion of the starch-iodine complex in the films, as confirmed by the visual and SEM analyses. Thus, this study illustrates the practical utility of the solid starch-iodine complex as a safe and efficient means of introducing iodine into an environment, mitigating the typical hazards associated with handling solid iodine.

2.
Int J Food Microbiol ; 406: 110375, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660435

RESUMO

Wheat, the raw material for flour milling, can be contaminated with enteric pathogens, leading to outbreaks linked to flour. In previous lab-scale studies, vacuum steam treatment was able to reduce Salmonella Enteritidis PT30 and Shiga-toxin producing E. coli (STEC) O121 levels on soft wheat kernels while maintaining flour quality and gluten functionality. This study used a newly designed lab-scale vacuum steam pasteurizer (VSP) to evaluate its efficacy to inactivate multiple strains of Salmonella and STEC on soft wheat by modeling the non-isothermal time-temperature history during treatment and reduction of the microbial populations. The results demonstrated that vacuum steam treatment could effectively disinfect wheat grains inoculated with enteric pathogens. In this study, Salmonella strains were less thermally resistant than STEC strains. The D75°C of Salmonella strains were 2.8 and 3.2 min, and the D75°C of STEC ranged from 3.1 to 4.6 min. E. faecium had a D75°C of 3.3 min, which indicates that it could be used as surrogate for larger scale evaluation of vacuum steam pasteurization in the future but was not conservative compared to some of the STEC strains.


Assuntos
Escherichia coli Shiga Toxigênica , Vapor , Pasteurização/métodos , Triticum , Vácuo , Microbiologia de Alimentos , Salmonella enteritidis
3.
Food Microbiol ; 111: 104194, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36681398

RESUMO

Outbreaks of Salmonella and Shiga-toxin producing Escherichia coli (STEC) linked to wheat flour led to increased interest in characterizing the fate of Salmonella and STEC on wheat during processing. Tempering is the stage of wheat processing where water is added to toughen the bran prior to milling, which has the potential to influence pathogen behavior on the kernels. This study aimed to quantify changes in the numbers of STEC and Salmonella inoculated onto soft red winter wheat, and to observe potential changes in the distribution of the pathogens on the surface of kernels during tempering. Lab-scale tempering experiments were conducted to quantify the water activity of and bacterial populations on wheat grain at various time points during 16 h of tempering. The highest water activity observed throughout 16 h of tempering was 0.88. There was no significant change (p > 0.05) in numbers of Salmonella, STEC, or native mesophiles. Using confocal microscopy, observation of Salmonella and STEC cells expressing mCherry on wheat kernels showed an even distribution of inoculated cells, though the localization of cells on kernels did not change significantly after tempering. Even though the environment was not favorable for pathogen replication on grain, the population remained stable, suggesting that disinfection of the kernels prior to milling could reduce food safety concerns in flour.


Assuntos
Escherichia coli Shiga Toxigênica , Triticum/microbiologia , Farinha/microbiologia , Microbiologia de Alimentos , Salmonella , Grão Comestível , Água
4.
Microbiol Spectr ; 10(6): e0157922, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36314928

RESUMO

Ruminants are a well-known reservoir for Listeria monocytogenes. In addition to asymptomatic carriage of the pathogen, ruminants can also acquire listeriosis and develop clinical manifestations in the form of neurologic or fetal infections, similar to those occurring in humans. Genomic characterization of ruminant listeriosis cases in Europe have identified lineage 1 and 2 strains associated with infection, as well as clonal complexes (CCs) that are commonly isolated from human cases of listeriosis; however, there is little information on the diversity of L. monocytogenes from ruminant listeriosis in the United States. In this study, we characterized and compared 73 L. monocytogenes isolates from ruminant listeriosis cases from the Midwest and the Upper Great Plains collected from 2015 to 2020. Using whole-genome sequence data, we classified the isolates and identified key virulence factors, stress-associated genes, and mobile genetic elements within our data set. Our isolates belonged to three different lineages: 31% to lineage 1, 53% to lineage 2, and 15% to lineage 3. Lineage 1 and 3 isolates were associated with neurologic infections, while lineage 2 showed a greater frequency of fetal infections. Additionally, the presence of mobile elements, virulence-associated genes, and stress and antimicrobial resistance genes was evaluated. These genetic elements are responsible for most of the subgroup-specific features and may play a key role in the spread of hypervirulent clones, including the spread of hypervirulent CC1 clone commonly associated with disease in humans, and may explain the increased frequency of certain clones in the area. IMPORTANCE Listeria monocytogenes affects humans and animals, causing encephalitis, septicemia, and abortions, among other clinical outcomes. Ruminants such as cattle, goats, and sheep are the main carriers contributing to the maintenance and dispersal of this pathogen in the farm environment. Contamination of food products from farms is of concern not only because many L. monocytogenes genotypes found there are associated with human listeriosis but also as a cause of significant economic losses when livestock and food products are affected. Ruminant listeriosis has been characterized extensively in Europe; however, there is limited information about the genetic diversity of these cases in the United States. Identification of subgroups with a greater ability to spread may facilitate surveillance and management of listeriosis and contribute to a better understanding of the genome diversity of this pathogen, providing insights into the molecular epidemiology of ruminant listeriosis in the region.


Assuntos
Listeria monocytogenes , Listeriose , Bovinos , Ovinos , Humanos , Animais , Estados Unidos/epidemiologia , Listeriose/epidemiologia , Listeriose/veterinária , Ruminantes , Genômica , Virulência , Microbiologia de Alimentos
5.
Microorganisms ; 10(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36296210

RESUMO

Heterogeneity in virulence potential of L. monocytogenes subgroups have been associated with genetic elements that could provide advantages in certain environments to invade, multiply, and survive within a host. The presence of gene mutations has been found to be related to attenuated phenotypes, while the presence of groups of genes, such as pathogenicity islands (PI), has been associated with hypervirulent or stress-resistant clones. We evaluated 232 whole genome sequences from invasive listeriosis cases in human and ruminants from the US and Europe to identify genomic elements associated with strains causing three clinical outcomes: central nervous system (CNS) infections, maternal-neonatal (MN) infections, and systemic infections (SI). Phylogenetic relationships and virulence-associated genes were evaluated, and a gene-based and single nucleotide polymorphism (SNP)-based genome-wide association study (GWAS) were conducted in order to identify loci associated with the different clinical outcomes. The orthologous results indicated that genes of phage phiX174, transfer RNAs, and type I restriction-modification (RM) system genes along with SNPs in loci involved in environmental adaptation such as rpoB and a phosphotransferase system (PTS) were associated with one or more clinical outcomes. Detection of phenotype-specific candidate loci represents an approach that could narrow the group of genetic elements to be evaluated in future studies.

6.
J Food Prot ; 85(8): 1210-1220, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35653628

RESUMO

ABSTRACT: Outbreaks of enteric pathogens linked to wheat flour have led the wheat milling industry to seek solutions addressing this food safety concern. Chlorinated water at 400 to 700 ppm has been used in the flour milling industry as a tempering aid to control growth of yeast and mold in tempering bins. However, the effectiveness of chlorinated water for inactivating enteric pathogens on wheat kernels was unknown. Five strains of Shiga toxin-producing Escherichia coli and two strains of Salmonella were inoculated onto hard red spring wheat at 7 log CFU/g and stored at room temperature for 1 month. Inoculated wheat was tempered with four concentrations (0, 400, 800, and 1,200 ppm) of chlorinated water (pH 6.5). The reduction due to chlorine was determined by calculating change in microbial loads at each chlorine level by using the response at 0 ppm as a reference. Uninoculated wheat tempered with chlorinated water was used to measure flour quality parameters. Changes in pathogen population over 18 h ranged from -2.35 to -0.30 log CFU/g with 800 ppm of chlorinated water and were not significantly different from changes at 400 and 1,200 ppm. Significant (P < 0.05) differences in the extent of reduction were observed among strains. However, the effect of chlorinated water at reducing native microbes on wheat kernels was minimal, with an average reduction of 0.39 log CFU/g for all concentrations. No significant (P > 0.05) changes occurred in flour quality and gluten functionality or during bread making for grains tempered at 400 and 800 ppm of chlorinated water. There were small but significant (P < 0.05) changes in flour protein content, final viscosity, and water absorption when tempered with 1,200 ppm of chlorinated water. The data showed that the level of chlorinated water currently used in industry for tempering could reduce enteric pathogen numbers by 1.22 log CFU/g for Shiga toxin-producing Escherichia coli and 2.29 log CFU/g for Salmonella, with no significant effects on flour quality and gluten functionality.


Assuntos
Farinha , Escherichia coli Shiga Toxigênica , Cloro/farmacologia , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Glutens , Salmonella , Triticum , Água/farmacologia
7.
J Food Prot ; 84(12): 2109-2115, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34347868

RESUMO

ABSTRACT: Wheat flour has been connected to outbreaks of foodborne illnesses with increased frequency in recent years, specifically, outbreaks involving Salmonella enterica and enterohemorrhagic Escherichia coli (EHEC). However, there is little information regarding the survival of these pathogens on wheat grain during long-term storage in a low-moisture environment. This study aims to evaluate the long-term survival of these enteric pathogens on wheat grain over the course of a year. Hard red spring wheat was inoculated with strains of four serovars of Salmonella (Enteritidis, Agona, Tennessee, and Montevideo) and six serotypes of EHEC (O157:H7, O26:H11, O121:H19, O45:NM, O111:H8, and O103:H2) in triplicate, sealed in Mylar bags to maintain the water activity, and stored at room temperature (22 ± 1°C). The survival of each pathogen was evaluated by plating onto differential media. Viable counts of strains from all four serovars of Salmonella (Enteritidis, Agona, Tennessee, and Montevideo) were detected on wheat grain stored at room temperature (22 ± 1°C) for the duration of the study (52 weeks). Viable counts of strains from EHEC serotypes O45:NM, O111:H8, and O26:H11 were only detected for 44 weeks, and strains from serotypes O157:H7, O121:H19, and O103:H2 were only detected for 40 weeks until they passed below the limit of detection (2.0 log CFU/g). The D-values were found to be significantly different between Salmonella and EHEC (adjusted P ≤ 0.05) with Salmonella D-values ranging from 22.9 ± 2.2 weeks to 25.2 ± 1.0 weeks and EHEC D-values ranging from 11.4 ± 0.6 weeks to 13.1 ± 1.8 weeks. There were no significant differences among the four Salmonella strains or among the six EHEC strains (adjusted P > 0.05). These observations highlight the wide range of survival capabilities of enteric pathogens in a low-moisture environment and confirm these pathogens are a food safety concern when considering the long shelf life of wheat grain and its products.


Assuntos
Escherichia coli Êntero-Hemorrágica , Escherichia coli O157 , Farinha , Microbiologia de Alimentos , Salmonella , Triticum
8.
Food Microbiol ; 91: 103516, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32539945

RESUMO

Thermal resistance among Salmonella serovars has been shown to vary, however, such data are minimal for Salmonella inoculated onto low moisture foods. We evaluated survival and subsequent thermal resistance for 32 strains of Salmonella from four serovars (Agona, Enteritidis, Montevideo, and Tennessee) on flaxseed over 24 weeks. After inoculation, flaxseeds were adjusted to aw = 0.5 and stored at 22 °C. After 24 weeks at 22 °C, strains of serovar Agona had a significantly slower rate of reduction compared to those of Enteritidis and Montevideo (adj. p < 0.05). Inoculated flaxseeds were processed at 71 °C with vacuum steam pasteurization at 4 time points during storage. Average initial D71°C values ranging from 1.0 to 1.5 min were similar across serovars. Over 24 weeks, D71°C varied in a serovar-dependent manner. D71°C at 8, 16, and 24 weeks did not change significantly for Enteritidis and Montevideo but did for Tennessee and Agona. While significant, the differences in D71°C over time were less than 1 min, indicating that storage time prior to heat treatment would have a minimal effect on the processing time required to inactivate Salmonella on flaxseed.


Assuntos
Linho/microbiologia , Salmonella/fisiologia , Contagem de Colônia Microbiana , Linho/química , Microbiologia de Alimentos , Armazenamento de Alimentos , Temperatura Alta , Viabilidade Microbiana , Pasteurização , Salmonella/classificação , Sorogrupo , Especificidade da Espécie , Vapor , Termotolerância , Vácuo , Água/análise
9.
J Food Prot ; 83(5): 836-843, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31928423

RESUMO

ABSTRACT: Recent outbreaks traced to contaminated flour have created a need in the milling industry for a process that reduces pathogens in wheat while maintaining its functional properties. Vacuum steam treatment is a promising technology for treatment of low-moisture foods. Traditional thermal treatment methods can compromise wheat functionality due to high temperatures; thus, maintaining the functional quality of the wheat protein was critical for this research. The objective of this study was to evaluate the effect of vacuum steam treatment of hard red spring (HRS) wheat kernels on final flour quality and the overall efficacy of vacuum stream treatment for reducing pathogens on HRS wheat kernels. HRS wheat samples were treated with steam under vacuum at 65, 70, 75, and 85°C for 4 and 8 min. Significant changes in dough and baked product functionality were observed for treatments at ≥70°C. Treatment time had no significant effect on the qualities evaluated. After determining that vacuum steam treatment at 65°C best preserved product quality, HRS wheat was inoculated with Escherichia coli O121 and Salmonella Enteritidis PT 30 and processed at 65°C for 0, 2, 4, 6, or 8 min. The treatments achieved a maximum average reduction of 3.57 ± 0.33 log CFU/g for E. coli O121 and 3.21 ± 0.27 log CFU/g for Salmonella. Vacuum steam treatment could be an effective pathogen inactivation method for the flour milling industry.


Assuntos
Escherichia coli Êntero-Hemorrágica/crescimento & desenvolvimento , Farinha , Manipulação de Alimentos/métodos , Salmonella enteritidis/crescimento & desenvolvimento , Triticum , Contagem de Colônia Microbiana , Farinha/microbiologia , Farinha/normas , Microbiologia de Alimentos , Vapor , Triticum/microbiologia , Vácuo
10.
Toxins (Basel) ; 11(11)2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31752303

RESUMO

In the field, foodborne pathogens such as enterohemorrhagic Escherichia coli (EHEC) are capable of surviving on produce over time, yet little is known about how these pathogens adapt to this environment. To assess the impact of pre-harvest environmental conditions on EHEC survival, we quantified survival on romaine lettuce under two relative humidity (75% and 45%) and seasonal conditions (March and June). Greenhouse-grown lettuce was spray-inoculated with EHEC and placed in a growth chamber, mimicking conditions typical for June and March in Salinas Valley, California. Bacteria were enumerated on days 0, 1, 3, and 5 post-inoculation. Overall, we found that the effect of relative humidity on EHEC survival depended on the seasonal conditions. Under June seasonal conditions, higher relative humidity led to lower survival, and lower relative humidity led to greater survival, five days post-inoculation. Under March seasonal conditions, the impact of relative humidity on EHEC survival was minimal over the five days. The bacteria were also tested for their ability to survive a chlorine decontamination wash. Inoculated lettuce was incubated under the June 75% relative humidity conditions and then washed with a 50 ppm sodium hypochlorite solution (40 ppm free chlorine). When incubated under June seasonal conditions for three to five days, EHEC strains showed increased tolerance to chlorine (adj. p < 0.05) compared to chlorine tolerance upon inoculation onto lettuce. This indicated that longer incubation on lettuce led to greater EHEC survival upon exposure to chlorine. Subsequent transcriptome analysis identified the upregulation of osmotic and oxidative stress response genes by EHEC after three and five days of incubation on pre-harvest lettuce. Assessing the physiological changes in EHEC that occur during association with pre-harvest lettuce is important for understanding how changing tolerance to post-harvest control measures may occur.


Assuntos
Cloro/farmacologia , Escherichia coli Êntero-Hemorrágica/efeitos dos fármacos , Microbiologia de Alimentos , Lactuca/microbiologia , Contagem de Colônia Microbiana , Escherichia coli Êntero-Hemorrágica/isolamento & purificação , Escherichia coli Êntero-Hemorrágica/fisiologia , Manipulação de Alimentos
11.
J Med Microbiol ; 68(11): 1677-1685, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31524579

RESUMO

Purpose. Listeria monocytogenes is a foodborne pathogen that causes central nervous system (CNS) and maternal-neonatal (MN) infections, bacteremia (BAC), and gastroenteritis in humans and ruminants. Specific clonal complexes (CC) have been associated with severe listeriosis cases, however, less is known about differences among subgroup virulence patterns. This study aimed to assess variation in virulence across different CC and clinical outcomes.Methodology. Galleria mellonella larvae were used to compare virulence phenotypes of 34 L. monocytogenes strains representing isolates from CC1, CC6 (from lineage I), and CC7, CC9, CC14, CC37 and CC204 (from lineage II) classified by clinical outcome: BAC, CNS and MN infection. Larvae survival, LD50, cytotoxicity, health index scores and bacterial concentrations post-infection were evaluated as quantifiable indicators of virulence.Results. Isolates belonging to CC14 and MN-associated infections are hypervirulent in G. mellonella as they led to lower G. mellonella survival rates and health index scores, as well as reduced cytotoxic effects when compared to other CC and clinical outcomes included here. CC14 isolates also showed increased bacterial concentrations at 8 and 24 h post-infection, indicating ability to survive the initial immune response and proliferate within G. mellonella larvae.Conclusion. Subgroups of L. monocytogenes possess different virulence phenotypes that may be associated with niche-specificity. While hypervirulent clones have been identified so far in lineage I, our data demonstrate that hypervirulent clones are not restricted to lineage I, as CC14 belongs to lineage II. Identification of subgroups with a higher ability to cause disease may facilitate surveillance and management of listeriosis.


Assuntos
Listeria monocytogenes/patogenicidade , Listeriose/microbiologia , Animais , Humanos , Larva/microbiologia , Lepidópteros/microbiologia , Listeria monocytogenes/classificação , Listeria monocytogenes/fisiologia , Fenótipo , Virulência
12.
Appl Environ Microbiol ; 85(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30877112

RESUMO

Untreated biological soil amendments of animal origin (BSAAO) are commonly used as biological fertilizers but can harbor foodborne pathogens like Salmonella enterica, leading to potential transfer from soils to fruits and vegetables intended for human consumption. Heat-treated poultry pellets (HTPP) can provide produce growers with a slow-release fertilizer with a minimized risk of pathogen contamination. Little is known about the impact of HTPP-amended soil on the survival of Salmonella enterica The contributions of RpoS and formation of viable but nonculturable cells to Salmonella survival in soils are also inadequately understood. We quantified the survival of Salmonella enterica subsp. enterica serovar Newport wild-type (WT) and rpoS-deficient (ΔrpoS mutant) strains in HTPP-amended and unamended soil with or without spinach plants over 91 days using culture and quantitative PCR methods with propidium monoazide (PMA-qPCR). Simulated "splash" transfer of S. Newport from soil to spinach was evaluated at 35 and 63 days postinoculation (dpi). The S. Newport WT and ΔrpoS mutant reached the limit of detection, 1.0 log CFU/g (dry weight), in unamended soil after 35 days, whereas 2 to 4 log CFU/g (dry weight) was observed for both WT and ΔrpoS mutant strains at 91 dpi in HTPP-amended soil. S. Newport levels in soils determined by PMA-qPCR and plate count methods were similar (P > 0.05). HTPP-amended soils supported higher levels of S. Newport transfer to and survival on spinach leaves for longer periods of time than did unamended soils (P < 0.05). Salmonella Newport introduced to HTPP-amended soils survived for longer periods and was more likely to transfer to and persist on spinach plants than was S. Newport introduced to unamended soils.IMPORTANCE Heat-treated poultry pellets (HTPP) often are used by fruit and vegetable growers as a slow-release fertilizer. However, contamination of soil on farms may occur through contaminated irrigation water or scat from wild animals. Here, we show that the presence of HTPP in soil led to increased S. Newport survival in soil and to greater likelihood of its transfer to and survival on spinach plants. There were no significant differences in survival durations of WT and ΔrpoS mutant isolates of S. Newport. The statistically similar populations recovered by plate count and estimated by PMA-qPCR for both strains in the amended and unamended soils in this study indicate that all viable populations of S. Newport in soils were culturable.


Assuntos
Fertilizantes , Salmonella enterica/fisiologia , Microbiologia do Solo , Solo/química , Spinacia oleracea/microbiologia , Agricultura/métodos , Animais , Proteínas de Bactérias/genética , Aves Domésticas , Salmonella enterica/genética , Fator sigma/genética
13.
J Food Prot ; 82(3): 501-506, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30810379

RESUMO

Manure runoff can transfer pathogens to farmlands or to water sources, leading to subsequent contamination of produce. Untreated biological soil amendments, like manure, can be contaminated with foodborne pathogens, such as Salmonella Newport, which may lead to transfer of the pathogen to fruits or vegetables. Studies have reported the occurrence and survival of Salmonella in manure or manure slurries. However, data on the survival and growth of Salmonella Newport is lacking in matrices simulating runoff. We quantified the survival and growth of wild-type (WT) Salmonella Newport and rpoS-deficient (Δ rpoS) strains in sterile and nonsterile soil extracts prepared with (amended) or without (unamended) heat-treated poultry pellets at 25°C. Salmonella Newport WT and Δ rpoS populations reached a maximum cell density of 6 to 8 log CFU/mL in 24 to 30 h in amended and unamended soil extracts and remained in stationary phase for up to 4 days. Salmonella Newport in amended soil extracts exhibited a decreased lag phase (λ , 2.87 ± 1.01 h) and greater maximum cell densities ( Nmax, 6.84 ± 1.25 CFU/mL) compared with λ (20.10 ± 9.53 h) and Nmax (5.22 ± 0.82 CFU/mL) in unamended soil extracts. In amended soil extract, the Δ rpoS strain had no measurable λ , similar growth rates (µmax) compared with WT, and a lower Nmax compared with the WT strain. Unamended, nonsterile soil extracts did not support the growth of Salmonella Newport WT and led to a decline in populations for the Δ rpoS strain. Salmonella Newport had lower cell densities in nonsterile soil extracts (5.94 ± 0.95 CFU/mL) than it did in sterile soil extracts (6.66 ± 1.50 CFU/mL), potentially indicating competition for nutrients between indigenous microbes and Salmonella Newport. The most favorable growth conditions were provided by amended sterile and nonsterile soil extracts, followed by sterile, unamended soil extracts for both Salmonella Newport strains. Salmonella Newport may grow to greater densities in amended extracts, providing a route for increased Salmonella levels in the growing environments of produce.


Assuntos
Produtos Agrícolas/microbiologia , Esterco/microbiologia , Salmonella/crescimento & desenvolvimento , Microbiologia do Solo , Animais , Contaminação de Alimentos , Temperatura Alta , Aves Domésticas , Solo
14.
Methods Mol Biol ; 1918: 129-137, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30580404

RESUMO

One strategy bacteria use to acclimate to changing environmental conditions is modulation of gene expression. Alterations in gene expression are indicative of activation or repression of certain physiological responses. In order to understand which genetic responses are utilized to cope with various environmental conditions by analyzing transcriptomes, obtaining RNA of high quality, yield, and integrity is paramount. Here, we describe an acid phenol-chloroform method employed to extract RNA from laboratory grown cell cultures, as well as cultures inoculated onto complex matrices such as lettuce and cold-smoked salmon. The method results in high-quality RNA, which can be used for various downstream processes such as cDNA library construction, RNA sequencing, real-time quantitative PCR, and northern analysis. Extraction of RNA from bacterial foodborne pathogens in conjunction with transcriptome sequencing is a useful technique to elucidate pathogens' transcriptional responses.


Assuntos
Microbiologia de Alimentos/métodos , Doenças Transmitidas por Alimentos/microbiologia , RNA Bacteriano/isolamento & purificação , Contaminação de Alimentos , Doenças Transmitidas por Alimentos/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de RNA
15.
Appl Microbiol Biotechnol ; 102(8): 3475-3485, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29500754

RESUMO

Listeria monocytogenes is a pathogen of significant concern in many ready to eat foods due to its ability to survive and multiply even under significant environmental stresses. Listeriosis in humans is a concern, especially to high-risk populations such as those who are immunocompromised or pregnant, due to the high rates of morbidity and mortality. Whole genome sequencing has become a routine part of assessing L. monocytogenes isolated from patients, and the frequency of different genetic subtypes associated with listeriosis is now being reported. The recent abundance of genome sequences for L. monocytogenes has provided a wealth of information regarding the variation in core and accessory genomic elements. Newly described accessory genomic regions have been linked to greater virulence capabilities as well as greater resistance to environmental stressors such as sanitizers commonly used in food processing facilities. This review will provide a summary of our current understanding of stress response and virulence phenotypes of L. monocytogenes, within the context of the genetic diversity of the pathogen.


Assuntos
Microbiologia de Alimentos , Variação Genética , Listeria monocytogenes/genética , Listeriose/microbiologia , Genômica , Humanos , Listeria monocytogenes/metabolismo , Listeria monocytogenes/patogenicidade , Virulência/genética
16.
Vet Microbiol ; 215: 93-97, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29290393

RESUMO

Listeria monocytogenes infections are an important disease of ruminants worldwide, causing encephalitis, septicemia, and abortions. Ruminant listeriosis can also pose a food safety risk due to the potential for L. monocytogenes to enter the food supply via the farm environment. Data on the genetic diversity of L. monocytogenes from ruminant clinical cases in the United States is limited. Our goal was to assess the genetic diversity of clinical listeriosis isolates from ruminants in the Upper Great Plains states, a population not well-studied, and compare this population to isolates from ruminants in New York State. Multi-locus sequence typing (MLST) was used to classify and compare the genetic diversity of the isolates from the two regions. Loci sequences were compared to all known sequence types using the Pasteur Institute L. monocytogenes MLST database. Four novel sequence types (ST) were identified among the Upper Great Plains isolates, and four new STs were classified in the New York collection. Five STs were found to be common across the 2 geographical regions; ST 1, 7, 191, and 204. Strains of ST 7 were most frequently isolated (7/46 isolates). Strains of ST 91 were all associated with fetal infections from the Upper Great Plains. Our results demonstrate that while there are some subtypes commonly found between the two geographic regions, there are also subtypes distinct to each region.


Assuntos
Variação Genética , Listeria monocytogenes/genética , Listeriose/veterinária , Ruminantes/microbiologia , Animais , Listeriose/epidemiologia , Listeriose/microbiologia , Tipagem de Sequências Multilocus , Estados Unidos/epidemiologia
17.
Int J Food Microbiol ; 244: 111-118, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28092821

RESUMO

Low moisture foods such as nuts, spices, and seeds have been implicated in several outbreaks due to Salmonella or E. coli O157:H7 contamination. Such foods may be consumed raw, and can be used as ingredients in other food products. While numerous thermal inactivation studies have been conducted for Salmonella on nuts, studies on other seeds and grains are minimal. Product water activity can influence the thermal resistance of pathogens, where thermal resistance increases as water activity decreases, leading to a requirement for higher temperatures and longer exposure times to achieve significant reduction of pathogen numbers. Vacuum steam pasteurization uses steam under vacuum, which can be operated at temperatures above and below 100°C. The objective of this study was to determine the efficacy of vacuum steam pasteurization for inactivation of pathogens on whole flaxseed, quinoa, sunflower kernels, milled flaxseed and whole black peppercorns. The use of E. faecium as a potential surrogate for Salmonella and E. coli O157:H7 in vacuum steam pasteurization was also evaluated. Pasteurization for 1min at 75°C yielded average log reductions of 5.48±1.22, 5.71±0.40 and 5.23±0.61 on flaxseed, 4.29±0.92, 5.89±0.26 and 2.39±0.83 on quinoa, and 4.01±0.74, 5.40±0.83 and 2.99±0.92 on sunflower kernels for Salmonella PT 30, E. coli O157:H7 and E. faecium, respectively. Similarly, on milled flaxseed and black peppercorns average log reductions of 3.02±0.79 and 6.10±0.64CFU/g were observed for Salmonella PT 30 after 1min of treatment at 75°C but, on average, >6.0 log reductions were observed after pasteurization at 85°C. Our data demonstrate that vacuum steam pasteurization can be effectively used to reduce pathogens on these low moisture foods at temperature as low as 75 and 85°C, and that E. faecium may be used as a potential surrogate for Salmonella PT 30 and E. coli O157:H7.


Assuntos
Enterococcus faecium/crescimento & desenvolvimento , Escherichia coli O157/crescimento & desenvolvimento , Temperatura Alta , Pasteurização/métodos , Salmonella/crescimento & desenvolvimento , Sementes/microbiologia , Vapor , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Fatores de Tempo , Vácuo
18.
J Food Prot ; 79(7): 1089-96, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27357027

RESUMO

Sublethal heating, which can occur during slow cooking of meat products, is known to induce increased thermal resistance in Salmonella. However, very few studies have addressed the kinetics of this response. Although several recent studies have reported improved thermal inactivation models that include the effect of prior sublethal history on subsequent thermal resistance, none of these models were based on cellular-level responses to sublethal thermal stress. The goal of this study was to determine whether a nonlinear model could accurately portray the response of Salmonella to heat stress induced by prolonged exposure to sublethal temperatures. To accomplish this, stationary-phase Salmonella Montevideo cultures were subjected to various heating profiles (held at either 40 or 45°C for 0, 5, 10, 15, 30, 60, 90, 180, or 240 min) using a PCR thermal cycler. Differential plating on selective and nonselective media was used to confirm the presence of cellular injury. Reverse transcription quantitative PCR was used to screen the transcript levels of six heat stress-related genes to find candidate genes for nonlinear modeling. Injury was detected in populations of Salmonella held at 45°C for 30, 60, and 90 min and at 40°C for 0, 5, and 90 min (P < 0.05), whereas no significant injury was found at 180 and 240 min (P > 0.05). The transcript levels of ibpA, which codes for a small heat shock protein associated with the ClpB and DnaK-DnaJ-GrpE chaperone systems, showed the greatest increase relative to the transcript levels at 0 min, which was significant at 5, 10, 15, 30, 60, 90, and 180 min at 45°C and at 5, 10, 15, 30, 60, and 90 min at 40°C (P < 0.05). Using ibpA transcript levels as an indicator of adaptation to thermal stress, a nonlinear model for sublethal injury is proposed. The use of variables indicating the physiological state of the pathogen during stress has the potential to increase the accuracy of thermal inactivation models that must account for prolonged exposure to sublethal temperatures.


Assuntos
Temperatura Alta , Salmonella enterica , Contagem de Colônia Microbiana , Produtos da Carne , Dinâmica não Linear
19.
Appl Environ Microbiol ; 82(3): 928-38, 2016 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26590286

RESUMO

We used whole-genome sequencing to determine evolutionary relationships among 20 outbreak-associated clinical isolates of Listeria monocytogenes serotypes 1/2a and 1/2b. Isolates from 6 of 11 outbreaks fell outside the clonal groups or "epidemic clones" that have been previously associated with outbreaks, suggesting that epidemic potential may be widespread in L. monocytogenes and is not limited to the recognized epidemic clones. Pairwise comparisons between epidemiologically related isolates within clonal complexes showed that genome-level variation differed by 2 orders of magnitude between different comparisons, and the distribution of point mutations (core versus accessory genome) also varied. In addition, genetic divergence between one closely related pair of isolates from a single outbreak was driven primarily by changes in phage regions. The evolutionary analysis showed that the changes could be attributed to horizontal gene transfer; members of the diverse bacterial community found in the production facility could have served as the source of novel genetic material at some point in the production chain. The results raise the question of how to best utilize information contained within the accessory genome in outbreak investigations. The full magnitude and complexity of genetic changes revealed by genome sequencing could not be discerned from traditional subtyping methods, and the results demonstrate the challenges of interpreting genetic variation among isolates recovered from a single outbreak. Epidemiological information remains critical for proper interpretation of nucleotide and structural diversity among isolates recovered during outbreaks and will remain so until we understand more about how various population histories influence genetic variation.


Assuntos
Surtos de Doenças , Evolução Molecular , Variação Genética , Listeria monocytogenes/genética , Listeriose/epidemiologia , Listeriose/microbiologia , Transferência Genética Horizontal , Genoma Bacteriano , Humanos , Listeria monocytogenes/isolamento & purificação , Filogenia , Mutação Puntual , Análise de Sequência de DNA , Sorogrupo , Sorotipagem , Estados Unidos/epidemiologia
20.
Foodborne Pathog Dis ; 12(12): 972-82, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26495863

RESUMO

We used a 10-gene (10G) multilocus sequence typing scheme to investigate the diversity and phylogenetic distribution of 124 Listeria monocytogenes strains across major lineages, major serotypes, and seven epidemic clones that have been previously associated with outbreaks. The 124 isolates proved to be diverse, with a total of 81 sequence types (10G-STs) belonging to 13 clonal complexes (CCs), where all STs of the same CC differ from one another in up to 3 of the 10 alleles (named as 10G-triple-locus-variant-clonal-complexes [10G-TLV-CCs]). Phenotypic characterization for 105 of the 124 strains showed that L. monocytogenes had variable maximum growth rate (µ(max)) in a defined medium at 16°C, and classification by lineage or serotype was not able to reflect the genetic basis for the difference of this phenotype. Among the six major 10G-TLV-CCs, 10G-TLV-CC4 that included lineage I strains had significantly lower µ(max) (Tukey honestly significant difference adjusted [adj.] p < 0.05) compared to 10G-TLV-CC1 and 10G-TLV-CC3 that both comprised lineage II strains, indicating a distinct difference in growth of these L. monocytogenes isolates under nutrient-limited conditions among some of the CCs. However, the other three (10G-TLV-CC2, 6, and 10) of the six major 10G-TLV-CCs containing either lineage I or lineage II strains did not show significantly different µ(max) compared to the others (adj. p < 0.05). Our findings highlighted the importance of using molecular typing methods that can be used in evolutionary analyses as a framework for further understanding the phenotypic characteristics of subgroups of L. monocytogenes.


Assuntos
Técnicas de Tipagem Bacteriana , Genótipo , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/genética , Tipagem de Sequências Multilocus , Células Clonais/classificação , Meios de Cultura , DNA Bacteriano , Variação Genética , Listeria monocytogenes/classificação , Fenótipo , Filogenia , Análise de Sequência de DNA , Sorogrupo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...