Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Children (Basel) ; 8(1)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445638

RESUMO

Newborn resuscitation requires a multidisciplinary team effort to deliver safe, effective and efficient care. California Perinatal Quality Care Collaborative's Simulating Success program was designed to help hospitals implement on-site simulation-based neonatal resuscitation training programs. Partnering with the Center for Advanced Pediatric and Perinatal Education at Stanford, Simulating Success engaged hospitals over a 15 month period, including three months of preparatory training and 12 months of implementation. The experience of the first cohort (Children's Hospital of Orange County (CHOC), Sharp Mary Birch Hospital for Women and Newborns (SMB) and Valley Children's Hospital (VCH)), with their site-specific needs and aims, showed that a multidisciplinary approach with a sound understanding of simulation methodology can lead to a dynamic simulation program. All sites increased staff participation. CHOC reduced latent safety threats measured during team exercises from 4.5 to two per simulation while improving debriefing skills. SMB achieved 100% staff participation by identifying unit-specific hurdles within in situ simulation. VCH improved staff confidence level in responding to neonatal codes and proved feasibility of expanding simulation across their hospital system. A multidisciplinary approach to quality improvement in neonatal resuscitation fosters engagement, enables focus on patient safety rather than individual performance, and leads to identification of system issues.

2.
Children (Basel) ; 7(11)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33137897

RESUMO

Extensive neonatal resuscitation is a high acuity, low-frequency event accounting for approximately 1% of births. Neonatal resuscitation requires an interprofessional healthcare team to communicate and carry out tasks efficiently and effectively in a high adrenaline state. Implementing a neonatal patient safety simulation and debriefing program can help teams improve the behavioral, cognitive, and technical skills necessary to reduce morbidity and mortality. In Simulating Success, a 15-month quality improvement (QI) project, the Center for Advanced Pediatric and Perinatal Education (CAPE) and California Perinatal Quality Care Collaborative (CPQCC) provided outreach and training on neonatal simulation and debriefing fundamentals to individual teams, including community hospital settings, and assisted in implementing a sustainable program at each site. The primary Aim was to conduct two simulations a month, with a goal of 80% neonatal intensive care unit (NICU) staff participation in two simulations during the implementation phase. While the primary Aim was not achieved, in-situ simulations led to the identification of latent safety threats and improvement in system processes. This paper describes one unit's QI collaborative experience implementing an in-situ neonatal simulation and debriefing program.

3.
Children (Basel) ; 7(10)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036226

RESUMO

Respiratory rate (RR) has been shown to be a reliable predictor of cardio-pulmonary deterioration, but standard RR monitoring methods in the neonatal intensive care units (NICU) with contact leads have been related to iatrogenic complications. Video-based monitoring is a potential non-contact system that could improve patient care. This iterative design study developed a novel algorithm that produced RR from footage analyzed from stable NICU patients in open cribs with corrected gestational ages ranging from 33 to 40 weeks. The final algorithm used a proprietary technique of micromotion and stationarity detection (MSD) to model background noise to be able to amplify and record respiratory motions. We found significant correlation-r equals 0.948 (p value of 0.001)-between MSD and the current hospital standard, electrocardiogram impedance pneumography. Our video-based system showed a bias of negative 1.3 breaths and root mean square error of 6.36 breaths per minute compared to standard continuous monitoring. Further work is needed to evaluate the ability of video-based monitors to observe clinical changes in a larger population of patients over extended periods of time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...