Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 293(6): 2159-2171, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29282286

RESUMO

Arabidopsis thaliana rapid alkalinization factor 1 (AtRALF1) is a small secreted peptide hormone that inhibits root growth by repressing cell expansion. Although it is known that AtRALF1 binds the plasma membrane receptor FERONIA and conveys its signals via phosphorylation, the AtRALF1 signaling pathway is largely unknown. Here, using a yeast two-hybrid system to search for AtRALF1-interacting proteins in Arabidopsis, we identified calmodulin-like protein 38 (CML38) as an AtRALF1-interacting partner. We also found that CML38 and AtRALF1 are both secreted proteins that physically interact in a Ca2+- and pH-dependent manner. CML38-knockout mutants generated via T-DNA insertion were insensitive to AtRALF1, and simultaneous treatment with both AtRALF1 and CML38 proteins restored sensitivity in these mutants. Hybrid plants lacking CML38 and having high accumulation of the AtRALF1 peptide did not exhibit the characteristic short-root phenotype caused by AtRALF1 overexpression. Although CML38 was essential for AtRALF1-mediated root inhibition, it appeared not to have an effect on the AtRALF1-induced alkalinization response. Moreover, acridinium-labeling of AtRALF1 indicated that the binding of AtRALF1 to intact roots is CML38-dependent. In summary, we describe a new component of the AtRALF1 response pathway. The new component is a calmodulin-like protein that binds AtRALF1, is essential for root growth inhibition, and has no role in AtRALF1 alkalinization.


Assuntos
Proteínas de Arabidopsis/fisiologia , Calmodulina/fisiologia , Hormônios Peptídicos/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Cálcio/farmacologia , Calmodulina/metabolismo , Concentração de Íons de Hidrogênio , Hormônios Peptídicos/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Ligação Proteica/efeitos dos fármacos
2.
Science ; 358(6370): 1596-1600, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29242234

RESUMO

In flowering plants, fertilization requires complex cell-to-cell communication events between the pollen tube and the female reproductive tissues, which are controlled by extracellular signaling molecules interacting with receptors at the pollen tube surface. We found that two such receptors in Arabidopsis, BUPS1 and BUPS2, and their peptide ligands, RALF4 and RALF19, are pollen tube-expressed and are required to maintain pollen tube integrity. BUPS1 and BUPS2 interact with receptors ANXUR1 and ANXUR2 via their ectodomains, and both sets of receptors bind RALF4 and RALF19. These receptor-ligand interactions are in competition with the female-derived ligand RALF34, which induces pollen tube bursting at nanomolar concentrations. We propose that RALF34 replaces RALF4 and RALF19 at the interface of pollen tube-female gametophyte contact, thereby deregulating BUPS-ANXUR signaling and in turn leading to pollen tube rupture and sperm release.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Fertilização , Tubo Polínico/fisiologia , Proteínas Quinases/metabolismo , Ligantes , Transdução de Sinais
3.
PLoS Genet ; 13(10): e1007053, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29028796

RESUMO

The rapid alkalinization factor (RALF) peptide negatively regulates cell expansion, and an antagonistic relationship has been demonstrated between AtRALF1, a root-specific RALF isoform in Arabidopsis, and brassinosteroids (BRs). An evaluation of the response of BR signaling mutants to AtRALF1 revealed that BRI1-associated receptor kinase1 (bak1) mutants are insensitive to AtRALF1 root growth inhibition activity. BAK1 was essential for the induction of AtRALF1-responsive genes but showed no effect on the mobilization of Ca2+ and alkalinization responses. Homozygous plants accumulating AtRALF1 and lacking the BAK1 gene did not exhibit the characteristic semi-dwarf phenotype of AtRALF1-overexpressors. Biochemical evidence indicates that AtRALF1 and BAK1 physically interact with a Kd of 4.6 µM and acridinium-labeled AtRALF1 was used to demonstrate that part of the specific binding of AtRALF1 to intact seedlings and to a microsomal fraction derived from the roots of Arabidopsis plants is BAK1-dependent. Moreover, AtRALF1 induces an increase in BAK1 phosphorylation, suggesting that the binding of AtRALF1 to BAK1 is functional. These findings show that BAK1 contains an additional AtRALF1 binding site, indicating that this protein may be part of a AtRALF1-containing complex as a co-receptor, and it is required for the negative regulation of cell expansion.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Hormônios Peptídicos/genética , Raízes de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Transporte/genética , Ciclo Celular/genética , Proliferação de Células/genética , Regulação da Expressão Gênica de Plantas/genética , Fenótipo , Fosforilação , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Transdução de Sinais/genética
4.
Plant Signal Behav ; 9(10): e976146, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25482784

RESUMO

Rapid alkalinization factor (RALF) is a peptide signal that plays a role in plant cell expansion. We have recently proposed that AtRALF1 negatively regulates root cell elongation and lateral root formation by opposing the effects of brassinosteroid (BR). We reported 6 AtRALF1-inducible cell wall-related genes and 2 P450 monooxygenase -encoding genes involved in the BR biosynthetic pathway. The AtRALF1-inducible genes implicated in cell wall remodeling were not downregulated by brassinolide (BL) treatment alone; their induction was only compromised following simultaneous treatment with AtRALF1 and BL. We further examined the cell wall-remodeling gene EXPANSIN A5 (AtEXPA5), which is upregulated by BL and has been shown to positively affect root cell elongation. Herein, we report that AtEXPA5 expression is downregulated by AtRALF1 in a dose-dependent manner in the roots and hypocotyls of Arabidopsis plants. AtEXPA5 is also downregulated in plants that overexpress AtRALF1, and it is upregulated in plants in which the AtRALF1 gene is partially silenced. The AtRALF1 peptide is also able to repress AtEXPA5 induction following a pre-treatment with BL. A schematic diagram showing the gene regulatory network connecting the recently reported genes with the regulation of cell expansion by AtEXPA5 is presented.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Brassinosteroides/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hormônios Peptídicos/metabolismo , Proteínas de Arabidopsis/genética , Proliferação de Células , Redes Reguladoras de Genes , Modelos Biológicos , Hormônios Peptídicos/genética , Reação em Cadeia da Polimerase em Tempo Real
5.
J Exp Bot ; 65(8): 2219-30, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24620000

RESUMO

Rapid alkalinization factor (RALF) is a peptide signal that plays a basic role in cell biology and most likely regulates cell expansion. In this study, transgenic Arabidopsis thaliana lines with high and low levels of AtRALF1 transcripts were used to investigate this peptide's mechanism of action. Overexpression of the root-specific isoform AtRALF1 resulted in reduced cell size. Conversely, AtRALF1 silencing increased root length by increasing the size of root cells. AtRALF1-silenced plants also showed an increase in the number of lateral roots, whereas AtRALF1 overexpression produced the opposite effect. In addition, four AtRALF1-inducible genes were identified: two genes encoding proline-rich proteins (AtPRP1 and AtPRP3), one encoding a hydroxyproline-rich glycoprotein (AtHRPG2), and one encoding a xyloglucan endotransglucosylase (TCH4). These genes were expressed in roots and involved in cell-wall rearrangement, and their induction was concentration dependent. Furthermore, AtRALF1-overexpressing plants were less sensitive to exogenous brassinolide (BL); upon BL treatment, the plants showed no increase in root length and a compromised increase in hypocotyl elongation. In addition, the treatment had no effect on the number of emerged lateral roots. AtRALF1 also induces two brassinosteroid (BR)-downregulated genes involved in the BR biosynthetic pathway: the cytochrome P450 monooxygenases CONSTITUTIVE PHOTOMORPHISM AND DWARFISM (CPD) and DWARF4 (DWF4). Simultaneous treatment with both AtRALF1 and BL caused a reduction in AtRALF1-inducible gene expression levels, suggesting that these signals may compete for components shared by both pathways. Taken together, these results indicate an opposing effect of AtRALF1 and BL, and suggest that RALF's mechanism of action could be to interfere with the BR signalling pathway.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Arabidopsis/citologia , Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Inativação Gênica , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Reação em Cadeia da Polimerase , Esteroides Heterocíclicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...