Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proteins ; 60(4): 787-96, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16021622

RESUMO

The targets of the Structural GenomiX (SGX) bacterial genomics project were proteins conserved in multiple prokaryotic organisms with no obvious sequence homolog in the Protein Data Bank of known structures. The outcome of this work was 80 structures, covering 60 unique sequences and 49 different genes. Experimental phase determination from proteins incorporating Se-Met was carried out for 45 structures with most of the remainder solved by molecular replacement using members of the experimentally phased set as search models. An automated tool was developed to deposit these structures in the Protein Data Bank, along with the associated X-ray diffraction data (including refined experimental phases) and experimentally confirmed sequences. BLAST comparisons of the SGX structures with structures that had appeared in the Protein Data Bank over the intervening 3.5 years since the SGX target list had been compiled identified homologs for 49 of the 60 unique sequences represented by the SGX structures. This result indicates that, for bacterial structures that are relatively easy to express, purify, and crystallize, the structural coverage of gene space is proceeding rapidly. More distant sequence-structure relationships between the SGX and PDB structures were investigated using PDB-BLAST and Combinatorial Extension (CE). Only one structure, SufD, has a truly unique topology compared to all folds in the PDB.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/genética , Genoma Bacteriano , Genômica , Bases de Dados de Proteínas , Enzimas/química , Enzimas/genética , Proteínas de Escherichia coli/genética , Modelos Moleculares , Conformação Proteica , Análise de Regressão , Difração de Raios X
2.
Structure ; 9(6): 527-37, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11435117

RESUMO

BACKGROUND: Quorum sensing is the mechanism by which bacteria control gene expression in response to cell density. Two major quorum-sensing systems have been identified, system 1 and system 2, each with a characteristic signaling molecule (autoinducer-1, or AI-1, in the case of system 1, and AI-2 in system 2). The luxS gene is required for the AI-2 system of quorum sensing. LuxS and AI-2 have been described in both Gram-negative and Gram-positive bacterial species and have been shown to be involved in the expression of virulence genes in several pathogens. RESULTS: The structure of the LuxS protein from three different bacterial species with resolutions ranging from 1.8 A to 2.4 A has been solved using an X-ray crystallographic structural genomics approach. The structure of LuxS reported here is seen to have a new alpha-beta fold. In all structures, an equivalent homodimer is observed. A metal ion identified as zinc was seen bound to a Cys-His-His triad. Methionine was found bound to the protein near the metal and at the dimer interface. CONCLUSIONS: These structures provide support for a hypothesis that explains the in vivo action of LuxS. Specifically, acting as a homodimer, the protein binds a methionine analog, S-ribosylhomocysteine (SRH). The zinc atom is in position to cleave the ribose ring in a step along the synthesis pathway of AI-2.


Assuntos
Proteínas de Bactérias/química , Genoma Bacteriano , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Liases de Carbono-Enxofre , Cristalografia por Raios X , Dimerização , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos
3.
Methods Enzymol ; 328: 515-29, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-11075364

RESUMO

The expression of putative ORFs as fusion proteins can accelerate research greatly. The availability of an epitope tag allows the use of Western blotting as an efficient means to identify useful recombinant plasmids, which can then be used to study protein function. In addition, the epitope tag can be extremely useful in downstream applications such as protein purification, immunolocalization, and immunoprecipitation experiments. The preceding protocols should be applicable to a variety of expression vectors, and should be useful in the identification of functional plasmids. The protocols require no exotic equipment and can be adapted for use in high-throughput transfection assays, protein purification protocols, and immunolocalization studies.


Assuntos
Fases de Leitura Aberta , Proteínas Recombinantes de Fusão/genética , Animais , Western Blotting , Células CHO , Técnicas de Cultura de Células/métodos , Linhagem Celular , Cricetinae , Eletroforese em Gel de Poliacrilamida/métodos , Vetores Genéticos , Humanos , Mamíferos , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Tiorredoxinas/genética , Transcrição Gênica , Transfecção/métodos
4.
Biotechniques ; 29(5): 1126-33, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11084876
5.
Biotechnology (N Y) ; 14(1): 77-81, 1996 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-9636316

RESUMO

We describe the heterologous expression of a 26.3 kD protein containing the catalytic domain of bovine enterokinase (EKL) in the methylotrophic yeast Pichia pastoris. A highly active protein is secreted and glycosylated, and it has the native amino-terminus of EKL. The cDNA encoding EKL was cloned with the KEX2 protease cleavage site following the alpha mating factor prepro secretion signal from Saccharomyces cerevisiae. The secreted EKL was easily purified from the few native proteins found in the P. pastoris fermentation supernatant, using ion exchange and affinity chromatography. The yield of the purified EKL was 6.3 mg per liter of fermentation culture. This is significantly higher than previous reports of expressions in E. coli and COS cells. The ability of this highly specific protease to cleave immediately after the carboxyl-terminal residue of the (Asp)4-Lys recognition sequence allows regeneration of native amino-terminal residues of recombinant proteins. Its application is demonstrated by the removal of thioredoxin (TrxA), and polyhistidine fusion partners from proteins of interest.


Assuntos
Enteropeptidase/genética , Fragmentos de Peptídeos/biossíntese , Animais , Fusão Gênica Artificial , Sítios de Ligação , Catálise , Bovinos , Enteropeptidase/biossíntese , Escherichia coli , Vetores Genéticos , Histidina , Peptídeos/metabolismo , Pichia , Proteínas Recombinantes/biossíntese , Solubilidade , Tiorredoxinas/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...