Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Multivariate Behav Res ; 59(5): 957-977, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39097830

RESUMO

When examining whether two continuous variables are associated, tests based on Pearson's, Kendall's, and Spearman's correlation coefficients are typically used. This paper explores modern nonparametric independence tests as an alternative, which, unlike traditional tests, have the ability to potentially detect any type of relationship. In addition to existing modern nonparametric independence tests, we developed and considered two novel variants of existing tests, most notably the Heller-Heller-Gorfine-Pearson (HHG-Pearson) test. We conducted a simulation study to compare traditional independence tests, such as Pearson's correlation, and the modern nonparametric independence tests in situations commonly encountered in psychological research. As expected, no test had the highest power across all relationships. However, the distance correlation and the HHG-Pearson tests were found to have substantially greater power than all traditional tests for many relationships and only slightly less power in the worst case. A similar pattern was found in favor of the HHG-Pearson test compared to the distance correlation test. However, given that distance correlation performed better for linear relationships and is more widely accepted, we suggest considering its use in place or additional to traditional methods when there is no prior knowledge of the relationship type, as is often the case in psychological research.


Assuntos
Simulação por Computador , Humanos , Estatísticas não Paramétricas , Interpretação Estatística de Dados , Psicologia/métodos , Pesquisa Comportamental/métodos , Modelos Estatísticos
2.
Psychometrika ; 88(4): 1228-1248, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37752345

RESUMO

Categorical marginal models (CMMs) are flexible tools for modelling dependent or clustered categorical data, when the dependencies themselves are not of interest. A major limitation of maximum likelihood (ML) estimation of CMMs is that the size of the contingency table increases exponentially with the number of variables, so even for a moderate number of variables, say between 10 and 20, ML estimation can become computationally infeasible. An alternative method, which retains the optimal asymptotic efficiency of ML, is maximum empirical likelihood (MEL) estimation. However, we show that MEL tends to break down for large, sparse contingency tables. As a solution, we propose a new method, which we call maximum augmented empirical likelihood (MAEL) estimation and which involves augmentation of the empirical likelihood support with a number of well-chosen cells. Simulation results show good finite sample performance for very large contingency tables.


Assuntos
Funções Verossimilhança , Psicometria , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA