Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Hazards (Dordr) ; 119(1): 463-495, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719282

RESUMO

The eruptions of Eyjafjallajökull volcano in 2010 (including its initial effusive phase at Fimmvörðuháls and its later explosive phase from the central volcano) and Bárðarbunga volcano in 2014-2015 (at Holuhraun) were widely reported. Here, we report on complementary, interdisciplinary observations made of the eruptive gases and lavas that shed light on the processes and atmospheric impacts of the eruptions, and afford an intercomparison of contrasting eruptive styles and hazards. We find that (i) consistent with other authors, there are substantial differences in the gas composition between the eruptions; namely that the deeper stored Eyjafjallajökull magmas led to greater enrichment in Cl relative to S; (ii) lava field SO2 degassing was measured to be 5-20% of the total emissions during Holuhraun, and the lava emissions were enriched in Cl at both fissure eruptions-particularly Fimmvörðuháls; and (iii) BrO is produced in Icelandic plumes in spite of the low UV levels. Supplementary Information: The online version contains supplementary material available at 10.1007/s11069-023-06114-7.

2.
Science ; 353(6296): aaf8988, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27418515

RESUMO

Large volcanic eruptions on Earth commonly occur with a collapse of the roof of a crustal magma reservoir, forming a caldera. Only a few such collapses occur per century, and the lack of detailed observations has obscured insight into the mechanical interplay between collapse and eruption. We use multiparameter geophysical and geochemical data to show that the 110-square-kilometer and 65-meter-deep collapse of Bárdarbunga caldera in 2014-2015 was initiated through withdrawal of magma, and lateral migration through a 48-kilometers-long dike, from a 12-kilometers deep reservoir. Interaction between the pressure exerted by the subsiding reservoir roof and the physical properties of the subsurface flow path explain the gradual, near-exponential decline of both collapse rate and the intensity of the 180-day-long eruption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...