Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 411(19): 4751-4763, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30617391

RESUMO

The market of new psychoactive substances (NPS) is characterized by a high turnover and thus provides several challenges for analytical toxicology. The analysis of urine samples often requires detailed knowledge about metabolism given that parent compounds either may be present only in small amounts or may not even be excreted. Hence, knowledge of the metabolism of NPS is a prerequisite for the development of reliable analytical methods. The main aim of this work was to elucidate for the first time the pooled human liver S9 fraction metabolism of the nine d-lysergic acid diethylamide (LSD) derivatives 1-acetyl-LSD (ALD-52), 1-propionyl-LSD (1P-LSD), 1-butyryl-LSD (1B-LSD), N6-ethyl-nor-LSD (ETH-LAD), 1-propionyl-N6-ethyl-nor-LSD (1P-ETH-LAD), N6-allyl-nor-LSD (AL-LAD), N-ethyl-N-cyclopropyl lysergamide (ECPLA), (2'S,4'S)-lysergic acid 2,4-dimethylazetidide (LSZ), and lysergic acid morpholide (LSM-775) by means of liquid chromatography coupled to high-resolution tandem mass spectrometry. Identification of the monooxygenase enzymes involved in the initial metabolic steps was performed using recombinant human enzymes and their contribution confirmed by inhibition experiments. Overall, N-dealkylation and hydroxylation, as well as combinations of these steps predominantly catalyzed by CYP1A2 and CYP3A4, were found. For ALD-52, 1P-LSD, and 1B-LSD, deacylation to LSD was observed. The obtained mass spectral data of all metabolites are essential for reliable analytical detection particularly in urinalysis and for differentiation of the LSD-like compounds as biotransformations also led to structurally identical metabolites. However, in urine of rats after the administration of expected recreational doses and using standard urine screening approaches, parent drugs or metabolites could not be detected.


Assuntos
Dietilamida do Ácido Lisérgico/análogos & derivados , Psicotrópicos/análise , Detecção do Abuso de Substâncias/métodos , Animais , Cromatografia Líquida/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Dietilamida do Ácido Lisérgico/urina , Masculino , Ratos , Ratos Wistar , Espectrometria de Massas em Tandem/métodos
2.
Anal Bioanal Chem ; 408(13): 3571-91, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27071765

RESUMO

Among the new psychoactive substances (NPS), so-called designer benzodiazepines have become of particular importance over the last 2 years, due to their increasing availability on the internet drug market. Therapeutically used nitrobenzodiazepines such as flunitrazepam are known to be extensively metabolized via N-dealkylation to active metabolites and via nitro reduction to the 7-amino compounds. The aim of the present work was to tentatively identify phase I and II metabolites of the latest members of this class appearing on the NPS market, clonazolam, meclonazepam, and nifoxipam, in human urine samples. Nano-liquid chromatography-high-resolution mass spectrometry was used to provide data about their detectability in urine. Data revealed that clonazolam and meclonazepam were extensively metabolized and mainly excreted as their amino and acetamino metabolites. Nifoxipam was also extensively metabolized, but instead mainly excreted as the acetamino metabolite and a glucuronic acid conjugate of the parent. Based on analysis of human urine samples collected in cases of acute intoxication within the Swedish STRIDA project, and samples submitted for routine drug testing, the most abundant metabolites and good targets for urine drug testing were 7-aminoclonazolam for clonazolam, 7-acetaminomeclonazepam for meclonazepam, and 7-acetaminonifoxipam for nifoxipam.


Assuntos
Cromatografia Líquida/métodos , Drogas Desenhadas/análise , Espectrometria de Massas/métodos , Detecção do Abuso de Substâncias/métodos , Urina/química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...