Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biol Drug Des ; 98(4): 481-492, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34148302

RESUMO

Metallo-ß-lactamases (MBLs) are zinc-containing carbapenemases that inactivate a broad range of ß-lactam antibiotics. There is a lack of ß-lactamase inhibitors for restoring existing ß-lactam antibiotics arsenals against common bacterial infections. Fragment-based screening of a non-specific metal chelator library demonstrates 8-hydroxyquinoline as a broad-spectrum nanomolar inhibitor against VIM-2 and NDM-1. A hit-based substructure search provided an early structure-activity relationship of 8-hydroxyquinolines and identified 8-hydroxyquinoline-7-carboxylic acid as a low-cytotoxic ß-lactamase inhibitor that can restore ß-lactam activity against VIM-2-expressing E. coli. Molecular modeling further shed structural insight into its potential mode of binding within the dinuclear zinc active site. 8-Hydroxyquinoline-7-carboxylic acid is highly stable in human plasma and human liver microsomal study, making it an ideal lead candidate for further development.


Assuntos
Hidroxiquinolinas/química , Bibliotecas de Moléculas Pequenas/química , Inibidores de beta-Lactamases/química , beta-Lactamases/metabolismo , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Escherichia coli/genética , Regulação da Expressão Gênica , Células HEK293 , Humanos , Hidroxiquinolinas/metabolismo , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Ligação Proteica , Bibliotecas de Moléculas Pequenas/metabolismo , Relação Estrutura-Atividade , Zinco/química , Inibidores de beta-Lactamases/metabolismo
2.
J Biol Inorg Chem ; 25(5): 717-727, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32500360

RESUMO

Due to the rapid proliferation of antibiotic-resistant pathogenic bacteria, known as carbapenem-resistant enterobacteriaceae, the efficacy of ß-lactam antibiotics is threatened. ß-lactam antibiotics constitute over 50% of the available antibiotic arsenal. Recent efforts have been focused on developing inhibitors to these enzymes. In an effort to understand the mechanism of inhibition(s) of four FDA-approved thiol-containing drugs that were previously reported to be inhibitors of New Delhi metallo-ß-lactamase (NDM-1), various biochemical and spectroscopic techniques were used. Isothermal titration calorimetry demonstrated the binding affinity to NDM-1 corresponds to the reported IC50 values of the inhibitors. Equilibrium dialyses and metal analyses demonstrated that all of these inhibitors formed ternary complexes with ZnZn-NDM-1. Spectroscopic studies on CoCo-NDM-1 revealed two distinct binding modes for the thiol-containing compounds. These findings validate the need to further investigate the mechanism of inhibition of MBL inhibitors. Further research to identify inhibition capabilities beyond reported IC50 values is necessary for understanding the binding modes of these identified compounds and to provide the necessary foundation for developing clinically relevant MBL inhibitors.


Assuntos
Compostos de Sulfidrila/farmacologia , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismo , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Compostos de Sulfidrila/química , Inibidores de beta-Lactamases/química , beta-Lactamases/genética
3.
Biochemistry ; 57(35): 5218-5229, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30106565

RESUMO

In an effort to evaluate whether a recently reported putative metallo-ß-lactamase (MßL) contains a novel MßL active site, SPS-1 from Sediminispirochaeta smaragdinae was overexpressed, purified, and characterized using spectroscopic and crystallographic studies. Metal analyses demonstrate that recombinant SPS-1 binds nearly 2 equiv of Zn(II), and steady-state kinetic studies show that the enzyme hydrolyzes carbapenems and certain cephalosporins but not ß-lactam substrates with bulky substituents at the 6/7 position. Spectroscopic studies of Co(II)-substituted SPS-1 suggest a novel metal center in SPS-1, with a reduced level of spin coupling between the metal ions and a novel Zn1 metal binding site. This site was confirmed with a crystal structure of the enzyme. The structure shows a Zn2 site that is similar to that in NDM-1 and other subclass B1 MßLs; however, the Zn1 metal ion is coordinated by two histidine residues and a water molecule, which is held in position by a hydrogen bond network. The Zn1 metal is displaced nearly 1 Å from the position reported in other MßLs. The structure also shows extended helices above the active site, which create a binding pocket that precludes the binding of substrates with large, bulky substituents at the 6/7 position of ß-lactam antibiotics. This study reveals a novel metal binding site in MßLs and suggests that the targeting of metal binding sites in MßLs with inhibitors is now more challenging with the identification of this new MßL.


Assuntos
Spirochaeta/enzimologia , Zinco/metabolismo , beta-Lactamases/metabolismo , beta-Lactamas/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Cinética , Modelos Moleculares , Filogenia , Conformação Proteica , Zinco/química , beta-Lactamases/química , beta-Lactamas/química
5.
J Biol Chem ; 293(32): 12606-12618, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29909397

RESUMO

Infections by carbapenem-resistant Enterobacteriaceae are difficult to manage owing to broad antibiotic resistance profiles and because of the inability of clinically used ß-lactamase inhibitors to counter the activity of metallo-ß-lactamases often harbored by these pathogens. Of particular importance is New Delhi metallo-ß-lactamase (NDM), which requires a di-nuclear zinc ion cluster for catalytic activity. Here, we compare the structures and functions of clinical NDM variants 1-17. The impact of NDM variants on structure is probed by comparing melting temperature and refolding efficiency and also by spectroscopy (UV-visible, 1H NMR, and EPR) of di-cobalt metalloforms. The impact of NDM variants on function is probed by determining the minimum inhibitory concentrations of various antibiotics, pre-steady-state and steady-state kinetics, inhibitor binding, and zinc dependence of resistance and activity. We observed only minor differences among the fully loaded di-zinc enzymes, but most NDM variants had more distinguishable selective advantages in experiments that mimicked zinc scarcity imposed by typical host defenses. Most NDM variants exhibited improved thermostability (up to ∼10 °C increased Tm ) and improved zinc affinity (up to ∼10-fold decreased Kd, Zn2). We also provide first evidence that some NDM variants have evolved the ability to function as mono-zinc enzymes with high catalytic efficiency (NDM-15, ampicillin: kcat/Km = 5 × 106 m-1 s-1). These findings reveal the molecular mechanisms that NDM variants have evolved to overcome the combined selective pressures of ß-lactam antibiotics and zinc deprivation.


Assuntos
Mutação , Zinco/farmacologia , beta-Lactamases/química , beta-Lactamases/metabolismo , Antibacterianos/metabolismo , Cristalografia por Raios X , Estabilidade Enzimática , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Proteica , Inibidores de beta-Lactamases/metabolismo , beta-Lactamases/genética , beta-Lactamases/isolamento & purificação
6.
ACS Infect Dis ; 4(2): 135-145, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29091730

RESUMO

Metallo-ß-lactamases (MBLs) are a growing threat to the continued efficacy of ß-lactam antibiotics. Recently, aspergillomarasmine A (AMA) was identified as an MBL inhibitor, but the mode of inhibition was not fully characterized. Equilibrium dialysis and metal analysis studies revealed that 2 equiv of AMA effectively removes 1 equiv of Zn(II) from MBLs NDM-1, VIM-2, and IMP-7 when the MBL is at micromolar concentrations. Conversely, 1H NMR studies revealed that 2 equiv of AMA remove 2 equiv of Co(II) from Co(II)-substituted NDM-1, VIM-2, and IMP-7 when the MBL/AMA are at millimolar concentrations. Our findings reveal that AMA inhibits the MBLs by removal of the active site metal ions required for ß-lactam hydrolysis among the most clinically significant MBLs.


Assuntos
Ácido Aspártico/análogos & derivados , beta-Lactamases/química , Ácido Aspártico/química , Ácido Aspártico/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Cobalto/química , Ativação Enzimática/efeitos dos fármacos , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Zinco/química , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismo
7.
J Med Chem ; 60(17): 7267-7283, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28809565

RESUMO

The efficacy of ß-lactam antibiotics is threatened by the emergence and global spread of metallo-ß-lactamase (MBL) mediated resistance, specifically New Delhi metallo-ß-lactamase-1 (NDM-1). By utilization of fragment-based drug discovery (FBDD), a new class of inhibitors for NDM-1 and two related ß-lactamases, IMP-1 and VIM-2, was identified. On the basis of 2,6-dipicolinic acid (DPA), several libraries were synthesized for structure-activity relationship (SAR) analysis. Inhibitor 36 (IC50 = 80 nM) was identified to be highly selective for MBLs when compared to other Zn(II) metalloenzymes. While DPA displayed a propensity to chelate metal ions from NDM-1, 36 formed a stable NDM-1:Zn(II):inhibitor ternary complex, as demonstrated by 1H NMR, electron paramagnetic resonance (EPR) spectroscopy, equilibrium dialysis, intrinsic tryptophan fluorescence emission, and UV-vis spectroscopy. When coadministered with 36 (at concentrations nontoxic to mammalian cells), the minimum inhibitory concentrations (MICs) of imipenem against clinical isolates of Eschericia coli and Klebsiella pneumoniae harboring NDM-1 were reduced to susceptible levels.


Assuntos
Escherichia coli/enzimologia , Klebsiella pneumoniae/enzimologia , Ácidos Picolínicos/química , Ácidos Picolínicos/farmacologia , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Humanos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
8.
ChemMedChem ; 12(11): 845-849, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28482143

RESUMO

VIM-2 is one of the most common carbapenem-hydrolyzing metallo ß-lactamases (MBL) found in many drug-resistant Gram-negative bacterial strains. Currently, there is a lack of effective lead compounds with optimal therapeutic potential within our drug development pipeline. Here we report the discovery of 1-hydroxypyridine-2(1H)-thione-6-carboxylic acid (3) as a first-in-class metallo ß-lactamase inhibitor (MBLi) with a potent inhibition Ki of 13 nm against VIM-2 that corresponds to a remarkable 0.99 ligand efficiency. We further established that 3 can restore the antibiotic activity of amoxicillin against VIM-2-producing E. coli in a whole cell assay with an EC50 of 110 nm. The potential mode of binding of 3 from molecular modeling provided structural insights that could corroborate the observed changes in the biochemical activities. Finally, 3 possesses a low cytotoxicity (CC50 ) of 97 µm with a corresponding therapeutic index of 880, making it a promising lead candidate for further optimization in combination antibacterial therapy.


Assuntos
Ácidos Picolínicos/síntese química , Ácidos Picolínicos/farmacologia , Tionas/síntese química , Tionas/farmacologia , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Células HEK293 , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Modelos Moleculares , Ácidos Picolínicos/toxicidade , Pseudomonas aeruginosa/efeitos dos fármacos , Tionas/toxicidade , Inibidores de beta-Lactamases/toxicidade , beta-Lactamases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...