Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 11(3)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36979834

RESUMO

The synthetic antimicrobial peptides (sAMPs) Pep19-2.5 and Pep19-4LF have been shown in vitro and in vivo to reduce the release of pro-inflammatory cytokines, leading to the suppression of inflammation and immunomodulation. We hypothesized that intervention with Pep19-2.5 and Pep19-4LF immediately after cardiac arrest and resuscitation (CA-CPR) might attenuate immediate systemic inflammation, survival, and long-term outcomes in a standardized mouse model of CA-CPR. Long-term outcomes up to 28 days were assessed between a control group (saline) and two peptide intervention groups. Primarily, survival as well as neurological and cognitive parameters were assessed. In addition, systemic inflammatory molecules and specific biomarkers were analyzed in plasma as well as in brain tissue. Treatment with sAMPs did not provide any short- or long-term benefits for either survival or neurological outcomes, and no significant benefit on inflammation in the CA-CPR animal model. While no difference was found in the plasma analysis of early cytokines between the intervention groups four hours after resuscitation, a significant increase in UCH-L1, a biomarker of neuronal damage and blood-brain barrier rupture, was measured in the Pep19-4LF-treated group. The theoretical benefit of both sAMPs tested here for the treatment of post-cardiac arrest syndrome could not be proven.

2.
Mol Imaging Biol ; 24(3): 466-478, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34779968

RESUMO

PURPOSE: The mammalian brain glucose metabolism is tightly and sensitively regulated. An ischemic brain injury caused by cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) affects cerebral function and presumably also glucose metabolism. The majority of patients who survive CA suffer from cognitive deficits and physical disabilities. Toll-like receptor 2 (TLR2) plays a crucial role in inflammatory response in ischemia and reperfusion (I/R). Since deficiency of TLR2 was associated with increased survival after CA-CPR, in this study, glucose metabolism was measured using non-invasive [18F]F-FDG PET-CT imaging before and early after CA-CPR in a mouse model comparing wild-type (WT) and TLR2-deficient (TLR2-/-) mice. The investigation will evaluate whether FDG-PET could be useful as an additional methodology in assessing prognosis. PROCEDURES: Two PET-CT scans using 2-deoxy-2-[18F]fluoro-D-glucose ([18F]F-FDG) tracer were carried out to measure dynamic glucose metabolism before and early after CPR. To achieve this, anesthetized and ventilated adult female WT and TLR2-/- mice were scanned in PET-CT. After recovery from the baseline scan, the same animals underwent 10-min KCL-induced CA followed by CPR. Approximately 90 min after CA, measurements of [18F]F-FDG uptake for 60 min were started. The [18F]F-FDG standardized uptake values (SUVs) were calculated using PMOD-Software on fused FDG-PET-CT images with the included 3D Mirrione-Mouse-Brain-Atlas. RESULTS: The absolute SUVmean of glucose in the whole brain of WT mice was increased about 25.6% after CA-CPR. In contrast, the absolute glucose SUV in the whole brain of TLR2-/- mice was not significantly different between baseline and measurements post CA-CPR. In comparison, baseline measurements of both mouse strains show a highly significant difference with regard to the absolute glucose SUV in the whole brain. Values of TLR2-/- mice revealed a 34.6% higher glucose uptake. CONCLUSIONS: The altered mouse strains presented a different pattern in glucose uptake under normal and ischemic conditions, whereby the post-ischemic differences in glucose metabolism were associated with the function of key immune factor TLR2. There is evidence for using early FDG-PET-CT as an additional diagnostic tool after resuscitation. Further studies are needed to use PET-CT in predicting neurological outcomes.


Assuntos
Reanimação Cardiopulmonar , Parada Cardíaca , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Fluordesoxiglucose F18 , Glucose/metabolismo , Parada Cardíaca/complicações , Parada Cardíaca/diagnóstico por imagem , Humanos , Isquemia , Mamíferos/metabolismo , Camundongos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons , Receptor 2 Toll-Like/metabolismo
3.
PLoS One ; 14(8): e0220404, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31369614

RESUMO

BACKGROUND: Patients experiencing cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) often die or suffer from severe neurological impairment. Post resuscitation syndrome is characterized by a systemic inflammatory response. Toll-like receptor 4 (TLR4) is a major mediator of inflammation and TLR4 has been implicated in the pathogenesis of post-resuscitation encephalopathy. The aim of this study was to evaluate whether TLR4 deficiency or inhibition can modulate survival and neurofunctional outcome after CA/CPR. METHODS: Following intubation and central venous cannulation, CA was induced in wild type (C57Bl/6J, n = 38), TLR4 deficient (TLR4-/-, n = 37) and TLR4 antibody treated mice (5mg/kg MTS510, n = 15) by high potassium. After 10min, CPR was performed using a modified sewing machine until return of spontaneous circulation (ROSC). Cytokines and cerebral TNFalpha levels were measured 8h after CA/CPR. Survival, early neurological recovery, locomotion, spatial learning and memory were assessed over a period of 28 days. RESULTS: Following CA/CPR, all mice exhibited ROSC and 31.5% of wild type mice survived until day 28. Compared to wild type mice, neither TLR4-/- nor MTS510 treated wild type mice had statistically significant altered survival following CA/CPR (51.3 and 26.7%, P = 0.104 and P = 0.423 vs. WT, respectively). Antibody-treated but not TLR4-/- mice had higher IL-1ß and IL-6 levels and TLR4-/- mice had higher IL-10 and cerebral TNFalpha levels. No differences existed between mice of all groups in early neurological recovery, locomotion, spatial learning ability or remembrance. CONCLUSION: Therapeutic strategies targeting TLR4 may not be suitable for the reduction of mortality or neurofunctional impairment after CA/CPR.


Assuntos
Encefalopatias/etiologia , Reanimação Cardiopulmonar , Parada Cardíaca/complicações , Receptor 4 Toll-Like/deficiência , Animais , Encefalopatias/prevenção & controle , Reanimação Cardiopulmonar/efeitos adversos , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Parada Cardíaca/mortalidade , Hemodinâmica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Síndrome de Resposta Inflamatória Sistêmica/complicações , Síndrome de Resposta Inflamatória Sistêmica/etiologia , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
4.
Ann Vasc Surg ; 49: 191-205, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29518504

RESUMO

BACKGROUND: Paraplegia due to spinal cord ischemia (SCI) is a serious complication after repair of thoracoabdominal aortic aneurysms. For prevention and early treatment of spinal ischemia, intraoperative monitoring of spinal cord integrity is essential. This study was intended to improve recognition of SCI through a combination of transcranial motor-evoked potentials (tc-MEPs), serum markers, and innovative breath analysis. METHODS: In 9 female German Landrace pigs, tc-MEPs were captured, markers of neuronal damage were determined in blood, and volatile organic compounds (VOCs) were analyzed in exhaled air. After thoraco-phrenico-laparotomy, SCI was initiated through sequential clamping (n = 4) or permanently ligating (n = 5) SAs of the abdominal and thoracic aorta in caudocranial orientation until a drop in the tc-MEPs to at least 25% of the baseline was recorded. VOCs in breath were determined by means of solid-phase microextraction coupled with gas chromatography-mass spectrometry. After waking up, clinical and neurological status was evaluated (Tarlov score). Spinal cord histology was obtained in postmortem. RESULTS: Permanent vessel ligature induced a worse neurological outcome and a higher number of necrotic motor neurons compared to clamping. Changes of serum markers remained unspecific. After laparotomy, exhaled acetone and isopropanol showed highest concentrations, and pentane and hexane increased during ischemia-reperfusion injury. CONCLUSIONS: To mimic spinal ischemia occurring in humans during aortic aneurysm repair, animal models have to be meticulously evaluated concerning vascular anatomy and function. Volatiles from breath indicated metabolic stress during surgery and oxidative damage through ischemia reperfusion. Breath VOCs may provide complimentary information to conventional monitoring methods.


Assuntos
Aorta Abdominal/cirurgia , Aorta Torácica/cirurgia , Biomarcadores/sangue , Testes Respiratórios/métodos , Potencial Evocado Motor , Monitorização Neurofisiológica Intraoperatória/métodos , Isquemia do Cordão Espinal/diagnóstico , Compostos Orgânicos Voláteis/metabolismo , Animais , Constrição , Modelos Animais de Doenças , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Ligadura , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Estresse Oxidativo , Valor Preditivo dos Testes , Microextração em Fase Sólida , Isquemia do Cordão Espinal/sangue , Isquemia do Cordão Espinal/etiologia , Isquemia do Cordão Espinal/fisiopatologia , Sus scrofa , Fatores de Tempo
5.
ASAIO J ; 63(2): 185-192, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28092273

RESUMO

A side-by-side comparison of the decarboxylation efficacy of two pump-driven venovenous extracorporeal lung assist devices, i.e., a first prototype of the new miniaturized ambulatory extracorporeal membrane ventilator, I-lung versus the commercial system iLA-activve for more than a period of 72 hours in a large animal model. Fifteen German Landrace pigs were anesthetized and underwent mechanical hypoventilation to induce severe hypercapnia. Decarboxylation was accomplished by either the I-lung or the iLA-activve via a double lumen catheter in the jugular vein. Sham-operated pigs were not connected to extracorporeal devices. Cardiovascular, respiratory, and metabolic parameters were continuously monitored, combined with periodic arterial blood sampling for subsequent clinical blood diagnostics, such as gas exchange, hemolysis, coagulation parameters, and cytokine profiles. At the termination of the studies, lung tissue was harvested and examined histologically for pulmonary morphology and leukocyte tissue infiltration. Both extracorporeal devices showed high and comparable efficacy with respect to carbon dioxide elimination for more than 72 hours and were not associated with either bleeding events or clotting disorders. Pigs of both groups showed cardiovascular and hemodynamic stability without marked differences to sham-operated animals. Groups also did not differ in terms of inflammatory and metabolic parameters. We established a preclinical in vivo porcine model for comparative long-term testing of I-lung and iLA-activve. The I-lung prototype proved to be safe and feasible, providing adequate decarboxylation without any adverse events. Once translated into the clinical treatment, the new miniaturized and transportable I-lung device might represent a promising tool for treating awake and mobilized patients with decompensated pulmonary disorders.


Assuntos
Oxigenação por Membrana Extracorpórea , Pneumopatias/terapia , Ventiladores Mecânicos , Animais , Dióxido de Carbono/sangue , Descarboxilação , Modelos Animais , Oxigênio/sangue , Suínos
6.
JACC Basic Transl Sci ; 2(2): 149-159, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30167563

RESUMO

Cardiac arrest (CA) followed by cardiopulmonary resuscitation (CPR) is associated with high mortality and poor neurological outcome. We compared the effects of pravastatin and simvastatin on survival and neurofunction in a murine model of CA/CPR. Pravastatin, a hydrophilic statin, increased survival and neurofunction during a 28-day follow-up period. This therapy was associated with improved pulmonary function, reduced pulmonary edema, and increased endothelial cell function in vitro. In contrast, lipophilic simvastatin did not modulate survival but increased pulmonary edema and impaired endothelial cell function. Although pravastatin may display a therapeutic option for post-CA syndrome, the application of simvastatin may require re-evaluation.

7.
Crit Care Med ; 44(10): e988-95, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27322362

RESUMO

OBJECTIVES: The fibrin-derived peptide Bß15-42 (FX06) has been proven to attenuate ischemia/reperfusion injury. We tested the hypothesis that Bß15-42 improves survival rate and neurocognitive recovery after cardiopulmonary resuscitation. DESIGN: Pig and mouse model of cardiopulmonary resuscitation. SETTING: Two university hospitals. SUBJECTS: Pigs and mice. INTERVENTIONS: Pigs (n = 16) were subjected to 8-minute cardiac arrest. Successful resuscitated pigs (n = 12) were randomized either to 3 mg/kg Bß15-42 followed by a continuous infusion of 1 mg/kg/hr for 5 hours (pFX06; n = 6) or the control group (pCONTROL; n = 6). Cardiac damage, function, and hemodynamics were recorded up to 8 hours. Mice (n = 52) were subjected to 4-minute cardiac arrest followed by cardiopulmonary resuscitation, and randomized either to two boli of 2.4 mg/kg Bß15-42 (mFX06; n = 26) or the control group (mCONTROL; n = 26). Fourteen-day survival rate, neurocognitive function, and endothelial integrity (additional experiment with n = 26 mice) were evaluated. MEASUREMENTS AND MAIN RESULTS: Bß15-42 reduced cumulative fluid intake (3,500 [2,600-4,200] vs 6,800 [5,700-7,400] mL; p = 0.004) within 8 hours in pigs. In mice, Bß15-42 improved 14-day survival rate (mFX06 vs mCONTROL; 11/26 vs 6/26; p < 0.05) and fastened neurocognitive recovery in the Water-Maze test (15/26 vs 9/26 mice with competence to perform test; p < 0.05). Bß15-42-treated mice showed a significant higher length of intact pulmonary endothelium and reduced pulmonary leukocyte infiltration. CONCLUSIONS: This study confirms the new concept of an important role of fibrin derivatives in global ischemia/reperfusion injury, which can be attenuated by the fibrin-derived peptide Bß15-42.


Assuntos
Reanimação Cardiopulmonar/métodos , Produtos de Degradação da Fibrina e do Fibrinogênio/farmacologia , Parada Cardíaca/terapia , Fragmentos de Peptídeos/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Animais , Modelos Animais de Doenças , Parada Cardíaca/tratamento farmacológico , Testes de Função Cardíaca , Hemodinâmica , Mediadores da Inflamação/metabolismo , Camundongos , Distribuição Aleatória , Análise de Sobrevida , Suínos
8.
Shock ; 40(5): 414-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24089003

RESUMO

INTRODUCTION: Toll-like receptors (TLRs) play a crucial role in early host defense against microorganisms. Toll-like receptor 2 (TLR2) polymorphisms have a prevalence of 10%; functional defects of TLR2 are associated with higher susceptibility toward gram-positive bacteria, and TLR2 deficiency has been associated with an impaired adrenal stress response. In the present study, we compared endogenous corticosterone production of wild-type (WT) and TLR2-deficient (TLR2) mice and analyzed survival after hydrocortisone therapy during sepsis induced by cecal ligation and puncture (CLP). METHODS: Male C57BL/6J (WT); and B6.129-Tlr2tm1Kir/J (TLR2) mice were subjected to CLP or sham operation and randomly assigned to postoperative treatment with either hydrocortisone (5 mg/kg) or vehicle (n = 10 mice/group). Survival was documented for an observation period of 48 h. Endogenous corticosterone production following hydrocortisone treatment and lipoteichoic acid (LTA) exposure, interleukin 6 (IL-6) and IL-1ß plasma levels, and blood counts were determined following sham operation or CLP using another n = 5 mice/group. Statistical analysis was performed using analysis of variance/Bonferroni. RESULTS: TLR2 mice exhibited a lack of suppression and an attenuated increase in endogenous corticosterone production following hydrocortisone or LTA treatment, respectively. After CLP, TLR2 mice exhibited an uncompromised adrenal stress response, higher IL-6 levels, and increased survival compared with WT controls (75 vs. 35%; P < 0.05). Hydrocortisone therapy of TLR2 mice completely abolished this advantage (decrease in survival to 45%, P < 0.05 vs. vehicle-treated TLR2 mice) and was associated with decreased IL-1ß plasma concentrations. CONCLUSIONS: Toll-like receptor 2 deficiency is associated with an uncompromised adrenal stress response and increased survival rates during polymicrobial sepsis. Hydrocortisone treatment increases mortality of septic TLR2 mice, suggesting that hydrocortisone therapy might be harmful for individuals with functional TLR2 polymorphisms.


Assuntos
Hidrocortisona/toxicidade , Sepse/microbiologia , Receptor 2 Toll-Like/deficiência , Animais , Corticosterona/biossíntese , Corticosterona/sangue , Modelos Animais de Doenças , Retroalimentação Fisiológica/fisiologia , Hidrocortisona/uso terapêutico , Sistema Hipotálamo-Hipofisário/fisiopatologia , Mediadores da Inflamação/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sistema Hipófise-Suprarrenal/fisiopatologia , Sepse/sangue , Sepse/tratamento farmacológico , Sepse/fisiopatologia , Especificidade da Espécie , Análise de Sobrevida
9.
PLoS One ; 8(9): e74944, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24066159

RESUMO

BACKGROUND: Cardiac arrest (CA) followed by cardiopulmonary resuscitation (CPR) is associated with poor survival rate and neurofunctional outcome. Toll-like receptor 2 (TLR2) plays an important role in conditions of sterile inflammation such as reperfusion injury. Recent data demonstrated beneficial effects of the administration of TLR2-blocking antibodies in ischemia/reperfusion injury. In this study we investigated the role of TLR2 for survival and neurofunctional outcome after CA/CPR in mice. METHODS: Female TLR2-deficient (TLR2(-/-)) and wild type (WT) mice were subjected to CA for eight min induced by intravenous injection of potassium chloride and CPR by external chest compression. Upon the beginning of CPR, n = 15 WT mice received 5 µg/g T2.5 TLR2 inhibiting antibody intravenously while n = 30 TLR2(-/-) and n = 31 WT controls were subjected to injection of normal saline. Survival and neurological outcome were evaluated during a 28-day follow up period. Basic neurological function, balance, coordination and overall motor function as well as spatial learning and memory were investigated, respectively. In a separate set of experiments, six mice per group were analysed for cytokine and corticosterone serum levels eight hours after CA/CPR. RESULTS: TLR2 deficiency and treatment with a TLR2 blocking antibody were associated with increased survival (77% and 80% vs. 51% of WT control; both P < 0.05). Neurofunctional performance was less compromised in TLR2(-/-) and antibody treated mice. Compared to WT and antibody treated mice, TLR2(-/-) mice exhibited reduced IL-6 (both P < 0.05) but not IL-1ß levels and increased corticosterone plasma concentrations (both P < 0.05). CONCLUSION: Deficiency or functional blockade of TLR2 is associated with increased survival and improved neurofunctional outcome in a mouse model of CA/CPR. Thus, TLR2 inhibition could provide a novel therapeutic approach for reducing mortality and morbidity after cardiac arrest and cardiopulmonary resuscitation.


Assuntos
Reanimação Cardiopulmonar , Parada Cardíaca/terapia , Receptor 2 Toll-Like/deficiência , Animais , Feminino , Parada Cardíaca/genética , Camundongos , Camundongos Mutantes , Receptor 2 Toll-Like/genética
10.
Shock ; 33(5): 507-12, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20395771

RESUMO

Pharmacological protection from myocardial reperfusion injury, despite plenty of approaches, has still not been realized in humans. We studied the putative infarct size (IS)-sparing capacity of poly(ADP-ribose)polymerase inhibitor, INO-1001, and focused on cardiac functional recovery during reperfusion. Male farm-bred Landrace pigs were subjected to 1-h left anterior descending coronary artery occlusion followed by 3 h of reperfusion (control). Infarct size was determined by triphenyltetrazolium chloride/Evans blue staining. Plasma markers of myocardial injury (troponin T, creatine kinase, lactate dehydrogenase) were determined upon protocol completion. Cardiac function was continuously assessed via pulmonary and femoral artery catheters. INO-1001 (1 mg/kg) was administered upon reperfusion in the treatment group. As a positive control, untreated pigs were subjected to ischemic preconditioning (10-min left anterior descending coronary artery occlusion followed by 15-min reperfusion before the intervention). Ischemic preconditioning reduced myocardial damage reflected by a smaller IS and lower plasma markers of myocardial injury. INO-1001 did not reduce IS but significantly improved functional recovery (increased stroke volume, cardiac index, and mixed venous oxygen saturation) during reperfusion compared with vehicle-treated control and ischemic preconditioning. Although we could not confirm the IS-sparing capacities of poly(ADP-ribose)polymerase inhibitor, INO-1001, the drug holds the potential of hemodynamic improvement during reperfusion.


Assuntos
Cardiotônicos/uso terapêutico , Indóis/uso terapêutico , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Inibidores de Poli(ADP-Ribose) Polimerases , Animais , Hemodinâmica/efeitos dos fármacos , Precondicionamento Isquêmico Miocárdico , Masculino , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Suínos
11.
Shock ; 33(2): 189-96, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19487971

RESUMO

There are only few strategic and therapeutic options to improve the functional outcome of patients after cardiac arrest and resuscitation (CPR). The pathophysiology of reperfusion injury after global ischemia is not completely understood. We present here a murine model of cardiac arrest and resuscitation that allows an analysis of the pathophysiology of reperfusion injury, especially focusing on survival, tissue damage, and functional neurological parameters. Under systemic hemodynamic monitoring, male C57BL/6J mice were subjected to 3 min of a potassium-induced cardiac arrest. After resuscitation under controlled conditions, mice were observed and neurologically scored for 72 h post-CPR. As a control, sham-treated animals were provided. In addition, blood samples were drawn and organs were removed for a histological analysis. Here, global I/R led to functional and histological reperfusion damage. The overall mortality up to day 3 post-CPR was 54%. Resuscitated animals developed marked functional neurologic deficits, as assessed by Rotarod and elevated plus-maze testing. Histological examinations and blood analyses of CPR animals revealed significant leukocyte tissue infiltration and morphological damage of brain, lung, and kidneys. In summary, mice undergoing CPR after cardiac arrest present distinct neurological deficits, marked organ damage, and a 54% mortality rate. Our highly standardized and reproducible model of mice resuscitation provides a means for a better understanding of the post-CPR pathophysiology and thus opens new perspectives to develop relevant therapeutic approaches to minimize global I/R injury.


Assuntos
Reanimação Cardiopulmonar/métodos , Parada Cardíaca/induzido quimicamente , Parada Cardíaca/terapia , Potássio/toxicidade , Animais , Encéfalo/patologia , Reanimação Cardiopulmonar/efeitos adversos , Parada Cardíaca/mortalidade , Rim/patologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/fisiopatologia , Síndrome de Resposta Inflamatória Sistêmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...