Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 29(8): 11845-11853, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33984957

RESUMO

We present a novel approach to single-shot characterization of the spectral phase of broadband laser pulses. Our method is inexpensive, insensitive to alignment and combines the simplicity and robustness of the dispersion scan technique, that does not require spatio-temporal pulse overlap, with the advantages of single-shot pulse characterization methods such as single-shot frequency-resolved optical gating at a real-time reconstruction rate of several Hz.

2.
Struct Dyn ; 5(4): 044302, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30175156

RESUMO

We have investigated nuclear dynamics in bound and dissociating acetylene molecular ions in a time-resolved reaction microscopy experiment with a pair of few-cycle pulses. Vibrating bound acetylene cations or dissociating dications are produced by the first pulse. The second pulse probes the nuclear dynamics by ionization to higher charge states and Coulomb explosion of the molecule. For the bound cations, we observed vibrations in acetylene (HCCH) and its isomer vinylidene (CCHH) along the CC-bond with a periodicity of around 26 fs. For dissociating dication molecules, a clear indication of enhanced ionization is found to occur along the CH- and CC-bonds after 10 fs to 40 fs. The time-dependent ionization processes are simulated using semi-classical on-the-fly dynamics revealing the underling mechanisms.

3.
Phys Rev Lett ; 121(26): 263203, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30636162

RESUMO

At intensities below the recollision threshold, we show that recollision-induced excitation with one electron escaping fast after recollision and the other electron escaping with a time delay via a Coulomb slingshot motion is one of the most important mechanisms of nonsequential double ionization (NSDI), for strongly driven He at 400 nm. Slingshot NSDI is a general mechanism present for a wide range of low intensities and pulse durations. Anticorrelated two-electron escape is its striking hallmark. This mechanism offers an alternative explanation of anticorrelated two-electron escape obtained in previous studies.

4.
Opt Express ; 25(25): 31130-31139, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29245790

RESUMO

Intense, multi-color laser fields permit the control of the ionization of atoms and the steering of electron dynamics. Here, we present the efficient collinear creation of the second and third harmonic of a 790 nm femtosecond laser followed by a versatile field synthesizer for the three color fields' composition. Using the device, we investigate the strong-field ionization of neon by fields composed of the fundamental, and the second or third harmonic. The three-color device offers sufficient flexibility for the coherent control of strong-field processes and for time-resolved pump-probe studies.

5.
Sci Rep ; 7(1): 7488, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28790410

RESUMO

A three-dimensional semiclassical model is used to study double ionization of Ar when driven by a near-infrared and near-single-cycle laser pulse for intensities ranging from 0.85 × 1014 W/cm2 to 5 × 1014 W/cm2. Asymmetry parameters, distributions of the sum of the two electron momentum components along the direction of the polarization of the laser field and correlated electron momenta are computed as a function of the intensity and of the carrier envelope phase. A very good agreement is found with recently obtained results in kinematically complete experiments employing near-single-cycle laser pulses. Moreover, the contribution of the direct and delayed pathways of double ionization is investigated for the above observables. Finally, an experimentally obtained anti-correlation momentum pattern at higher intensities is reproduced with the three-dimensional semiclassical model and shown to be due to a transition from strong to soft recollisions with increasing intensity.

6.
Sci Rep ; 7(1): 5224, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28701692

RESUMO

The observation and manipulation of electron dynamics in matter call for attosecond light pulses, routinely available from high-order harmonic generation driven by few-femtosecond lasers. However, the energy limitation of these lasers supports only weak sources and correspondingly linear attosecond studies. Here we report on an optical parametric synthesizer designed for nonlinear attosecond optics and relativistic laser-plasma physics. This synthesizer uniquely combines ultra-relativistic focused intensities of about 1020 W/cm2 with a pulse duration of sub-two carrier-wave cycles. The coherent combination of two sequentially amplified and complementary spectral ranges yields sub-5-fs pulses with multi-TW peak power. The application of this source allows the generation of a broad spectral continuum at 100-eV photon energy in gases as well as high-order harmonics in relativistic plasmas. Unprecedented spatio-temporal confinement of light now permits the investigation of electric-field-driven electron phenomena in the relativistic regime and ultimately the rise of next-generation intense isolated attosecond sources.

7.
Phys Rev Lett ; 116(19): 193001, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27232019

RESUMO

Proton migration is a ubiquitous process in chemical reactions related to biology, combustion, and catalysis. Thus, the ability to manipulate the movement of nuclei with tailored light within a hydrocarbon molecule holds promise for far-reaching applications. Here, we demonstrate the steering of hydrogen migration in simple hydrocarbons, namely, acetylene and allene, using waveform-controlled, few-cycle laser pulses. The rearrangement dynamics is monitored using coincident 3D momentum imaging spectroscopy and described with a widely applicable quantum-dynamical model. Our observations reveal that the underlying control mechanism is due to the manipulation of the phases in a vibrational wave packet by the intense off-resonant laser field.

8.
Sci Rep ; 6: 21556, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26868370

RESUMO

We demonstrate a tool for quantitative measurements in the extreme ultraviolet (EUV) spectral region measuring spatially resolved atomic ionization products at the focus of an EUV beam. The ionizing radiation is a comb of the 11(th)-15(th) harmonics of a Ti:Sapphire femtosecond laser beam produced in a Xenon gas jet. The spatial ion distribution at the focus of the harmonics is recorded using an ion microscope. Spatially resolved single- and two-photon ionization products of Argon and Helium are observed. From such ion distributions single- and two-photon generalized cross sections can be extracted by a self-calibrating method. The observation of spatially resolved two-EUV-photon ionization constitutes an initial step towards future single-shot temporal characterization of attosecond pulses.

9.
Rev Sci Instrum ; 85(11): 113105, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430096

RESUMO

We report techniques developed to utilize three-dimensional momentum information as feedback in adaptive femtosecond control of molecular dynamics. Velocity map imaging is used to obtain the three-dimensional momentum map of the dissociating ions following interaction with a shaped intense ultrafast laser pulse. In order to recover robust feedback information, however, the two-dimensional momentum projection from the detector must be inverted to reconstruct the full three-dimensional momentum of the photofragments. These methods are typically slow or require manual inputs and are therefore accomplished offline after the images have been obtained. Using an algorithm based upon an "onion-peeling" (also known as "back projection") method, we are able to invert 1040 × 1054 pixel images in under 1 s. This rapid inversion allows the full photofragment momentum to be used as feedback in a closed-loop adaptive control scheme, in which a genetic algorithm tailors an ultrafast laser pulse to optimize a specific outcome. Examples of three-dimensional velocity map image based control applied to strong-field dissociation of CO and O2 are presented.

10.
Nat Commun ; 5: 3800, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24806279

RESUMO

Subfemtosecond control of the breaking and making of chemical bonds in polyatomic molecules is poised to open new pathways for the laser-driven synthesis of chemical products. The break-up of the C-H bond in hydrocarbons is an ubiquitous process during laser-induced dissociation. While the yield of the deprotonation of hydrocarbons has been successfully manipulated in recent studies, full control of the reaction would also require a directional control (that is, which C-H bond is broken). Here, we demonstrate steering of deprotonation from symmetric acetylene molecules on subfemtosecond timescales before the break-up of the molecular dication. On the basis of quantum mechanical calculations, the experimental results are interpreted in terms of a novel subfemtosecond control mechanism involving non-resonant excitation and superposition of vibrational degrees of freedom. This mechanism permits control over the directionality of chemical reactions via vibrational excitation on timescales defined by the subcycle evolution of the laser waveform.

11.
Nat Commun ; 4: 2895, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24309433

RESUMO

Shaping ultrafast laser pulses using adaptive feedback can manipulate dynamics in molecular systems, but extracting information from the optimized pulse remains difficult. Experimental time constraints often limit feedback to a single observable, complicating efforts to decipher the underlying mechanisms and parameterize the search process. Here we show, using two strong-field examples, that by rapidly inverting velocity map images of ions to recover the three-dimensional photofragment momentum distribution and incorporating that feedback into the control loop, the specificity of the control objective is markedly increased. First, the complex angular distribution of fragment ions from the nω+C2D4→C2D3++D interaction is manipulated. Second, isomerization of acetylene (nω+C2H2→C2H2(2+)→CH2++C+) is controlled via a barrier-suppression mechanism, a result that is validated by model calculations. Collectively, these experiments comprise a significant advance towards the fundamental goal of actively guiding population to a specified quantum state of a molecule.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Lasers , Modelos Químicos , Acetileno/química , Desenho de Equipamento , Etilenos/química , Processamento de Imagem Assistida por Computador/instrumentação , Íons/análise , Reprodutibilidade dos Testes
12.
Phys Rev Lett ; 108(6): 063002, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22401063

RESUMO

The steering of electron motion in molecules is accessible with waveform-controlled few-cycle laser light and may control the outcome of light-induced chemical reactions. An optical cycle of light, however, is much shorter than the duration of the fastest dissociation reactions, severely limiting the degree of control that can be achieved. To overcome this limitation, we extended the control metrology to the midinfrared studying the prototypical dissociative ionization of D(2) at 2.1 µm. Pronounced subcycle control of the directional D(+) ion emission from the fragmentation of D(2)(+) is observed, demonstrating unprecedented charge-directed reactivity. Two reaction pathways, showing directional ion emission, could be observed and controlled simultaneously for the first time. Quantum-dynamical calculations elucidate the dissociation channels, their observed phase relation, and the control mechanisms.

13.
Phys Rev Lett ; 108(7): 073003, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22401200

RESUMO

The strong-field induced decay of a doubly excited, transient Coulomb complex Ar**→Ar(2+)+2e(-) is explored by tracing correlated two-electron emission in nonsequential double ionization of Ar as a function of the carrier-envelope phase. Using <6 fs pulses, electron emission is essentially confined to one optical cycle. Classical model calculations support that the intermediate Coulomb complex has lost memory of its formation dynamics and allows for a consistent, though model-dependent definition of "emission time," empowering us to trace transition-state two-electron decay dynamics with sub-fs resolution. We find a most likely emission time difference of ∼200±100 as.

14.
Phys Chem Chem Phys ; 13(19): 8653-8, 2011 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-21475765

RESUMO

Strong few-cycle light fields with stable electric field waveforms allow controlling electrons on time scales down to the attosecond domain. We have studied the dissociative ionization of randomly oriented DCl in 5 fs light fields at 720 nm in the tunneling regime. Momentum distributions of D(+) and Cl(+) fragments were recorded via velocity-map imaging. A waveform-dependent anti-correlated directional emission of D(+) and Cl(+) fragments is observed. Comparison of our results with calculations indicates that tailoring of the light field via the carrier envelope phase permits the control over the orientation of DCl(+) and in turn the directional emission of charged fragments upon the breakup of the molecular ion.


Assuntos
Cloretos/química , Deutério/química , Lasers , Teoria Quântica
15.
Phys Rev Lett ; 104(10): 103004, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20366420

RESUMO

We present experimental and theoretical results on photodetachment of Br(-) and F(-) in a strong infrared laser field. The observed photoelectron spectra of Br(-) exhibit a high-energy plateau along the laser polarization direction, which is identified as being due to the rescattering effect. The shape and the extension of the plateau is found to be influenced by the depletion of negative ions during the interaction with the laser pulse. Our findings represent the first observation of electron rescattering in above-threshold photodetachment of an atomic system with a short-range potential.

16.
Ann Biol Clin (Paris) ; 67(4): 437-40, 2009.
Artigo em Francês | MEDLINE | ID: mdl-19654084

RESUMO

Biphenotypic acute leukaemia (BAL) represents about 5% of adult acute leukaemia. Based on a previously described scoring system, the European Group for Immunologic Classification of Leukaemia (EGIL) proposed a set of diagnostic criteria for BAL. This scoring system is based on the number and degree of the specificity of several markers for myeloid or T/B lymphoid blasts. Here, we report the case of a BAL with Burkitt-like cytology, corresponding to "the acute lymphoblastic leukaemia, Burkitt type" L3 for the FAB classification. By flow cytometry, the blasts showed a positivity for B lymphoid cytoplasmic (CD79a and mu) and membrane (CD19, CD22, CD24, IgM) markers AND a positivity for the myeloid (CD13, CD33, CD65, CD15) markers.


Assuntos
Leucemia Aguda Bifenotípica/genética , Adulto , Crise Blástica/patologia , Linfoma de Burkitt/patologia , Citometria de Fluxo/métodos , Humanos , Leucemia Aguda Bifenotípica/classificação , Leucemia Aguda Bifenotípica/epidemiologia , Leucemia Aguda Bifenotípica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...