Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 12: 659507, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349777

RESUMO

With climate change bound to affect food and feed production, emphasis will shift to resilient and adapted indigenous livestock to sustain animal production. However, indigenous livestock comprise several varieties, strains and ecotypes whose genomes are poorly characterized. Here, we investigated genomic variation in an African thin-tailed Desert Sheep sampled in Sudan, using 600K genotype data generated from 92 individuals representing five ecotypes. We included data from 18 fat-tailed and 45 thin-tailed sheep from China, to investigate shared ancestry and perform comparative genomic analysis. We observed a clear genomic differentiation between the African thin-tailed Desert Sheep and the Chinese thin-tailed and fat-tailed sheep, suggesting a broad genetic structure between the fat-tailed and thin-tailed sheep in general, and that at least two autosomal gene pools comprise the genome profile of the thin-tailed sheep. Further analysis detected two distinct genetic clusters in both the African thin-tailed Desert Sheep and the Chinese thin-tailed sheep, suggesting a fine-scale and complex genome architecture in thin-tailed sheep. Selection signature analysis suggested differences in adaptation, production, reproduction and morphology likely underly the fine-scale genetic structure in the African thin-tailed Desert Sheep. This may need to be considered in designing breeding programs and genome-wide association studies.

3.
Genes (Basel) ; 11(12)2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33317115

RESUMO

Homozygosity of long sequence genotypes are a result of parents transmitting identical haplotypes, which can be used to estimate their auto-zygosity. Therefore, we used high-density SNP Chip data to characterize the auto-zygosity of each breed according to the occurrence and distribution of runs of homozygosity (ROH). Subsequently, we identified the genomic regions with high runs of homozygosity frequencies within individuals of each breed. We selected 96 sheep samples from five local Chinese sheep breeds belonging to different geographical locations. We identified 3046 ROHs within the study breed individuals, among which the longer segments (>1-5 Mb) were dominant. On average, ROH segments covered about 12% of the genomes; the coverage rate of OAR20 was the lowest and that of OAR2 was the highest. The distribution analysis of runs of homozygosity showed that the detected ROH mainly distributed between >26 and 28 Mb. The Hetian and Hu sheep showed the lowest ROH distribution. The estimation of homozygosity level reflects the history of modern and ancient inbreeding, which may affect the genomes of Chinese indigenous sheep breeds and indicate that some animals have experienced recent self-pollination events (Yabuyi, Karakul and Wadi). In these sheep breeds, the genomic regions were assumed to be under selection signatures frequently in line with long ROH. These regions included candidate genes associated with disease resistance traits (5S_rRNA), the innate and adaptive immune response (HERC2 and CYFIP1), digestion and metabolism (CENPJ), growth (SPP1), body size and developments (GJB2 and GJA3). This study highlighted new insights into the ROH patterns and provides a basis for future breeding and conservation strategies of Chinese sheep breeds.


Assuntos
Adaptação Fisiológica/genética , Homozigoto , Ovinos/genética , Animais , Cruzamento/métodos , China , Demografia , Feminino , Variação Genética/genética , Genética Populacional/métodos , Genoma/genética , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Genótipo , Haplótipos/genética , Masculino , Fenótipo , Polimorfismo Genético/genética , Seleção Genética/genética , Ovinos/classificação
4.
PLoS One ; 15(8): e0235426, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32817695

RESUMO

Coat colour is one of the most important economic traits of sheep and is mainly used for breed identification and characterization. This trait is determined by the biochemical function, availability and distribution of phaeomelanin and eumelanin pigments. In our study, we conducted a genome-wide association study to identify candidate genes and genetic variants associated with coat colour in 75 Chinese Tan sheep using the ovine 600K SNP BeadChip. Accordingly, we identified two significant SNPs (rs409651063 at 14.232 Mb and rs408511664 at 14.228 Mb) associated with coat colour in the MC1R gene on chromosome 14 with -log10(P) = 2.47E-14 and 1.00E-13, respectively. The consequence of rs409651063 was a missense variant (g.14231948 G>A) that caused an amino acid change (Asp105Asn); however, the second SNP (rs408511664) was a synonymous substitution and is an upstream variant (g.14228343G>A). Moreover, our PCR analysis revealed that the genotype of white sheep was exclusively homozygous (GG), whereas the genotypes of black-head sheep were mainly heterozygous (GA). Interestingly, allele-specific expression analysis (using the missense variant for the skin cDNA samples from black-head sheep) revealed that only the G allele was expressed in the skin covered with white hair, while both the G and A alleles were expressed in the skin covered with black hair. This finding indicated that the missense mutation that we identified is probably responsible for white coat colour in Tan sheep. Furthermore, qPCR analysis of MC1R mRNA level in the skin samples was significantly higher in black-head than white sheep and very significantly higher in GA than GG individuals. Taken together, these results help to elucidate the genetic mechanism underlying coat colour variation in Chinese indigenous sheep.


Assuntos
Cor de Cabelo/genética , Polimorfismo de Nucleotídeo Único , Receptor Tipo 1 de Melanocortina/genética , Ovinos/genética , Animais , Receptor Tipo 1 de Melanocortina/metabolismo , Lã/metabolismo
5.
Animals (Basel) ; 10(1)2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31877963

RESUMO

Sheep (Ovis aries) is one of the most economically, culturally, and socially important domestic animals. They are reared primarily for meat, milk, wool, and fur production. Sheep were reared using natural selection for a long period of time to offer these traits. In fact, this production system has been slowing the productivity and production potential of the sheep. To improve production efficiency and productivity of this animal through genetic improvement technologies, understanding the genetic background of traits such as body growth, weight, carcass quality, fat percent, fertility, milk yield, wool quality, horn type, and coat color is essential. With the development and utilization of animal genotyping technologies and gene identification methods, many functional genes and genetic variants associated with economically important phenotypic traits have been identified and annotated. This is useful and presented an opportunity to increase the pace of animal genetic gain. Quantitative trait loci and genome wide association study have been playing an important role in identifying candidate genes and animal characterization. This review provides comprehensive information on the identified genomic regions and candidate genes associated with production and reproduction traits, and gene function in sheep.

6.
Front Genet ; 10: 1190, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31850061

RESUMO

Ethiopia is considered as the main gateway for the introduction of livestock species, including goat, to the African continent. Ethiopian goats are characterized by their unique adaptive ability, and different physical characteristics in terms of morphology, body size, coat colors, and other important traits. The comparative population genomic analysis provides useful genomic information associated with important traits. Whole-genome resequencing of 44 Ethiopian indigenous goats produced 16 million single-nucleotide polymorphisms (SNPs) as well as 123,577 insertions and deletions. Specifically, 11,137,576, 10,760,581, 10,833,847, 12,229,657 and 10,749,996 putative SNPs were detected in Abergelle, Afar, Begait, Central Highland and Meafure goat populations, respectively. In this study, we used population differentiation (F ST) and pooled heterozygosity (HP ) Cbased approaches. From the F ST analysis, we identified 480 outlier windows. The HP approach detected 108 and 205 outlier windows for Abergelle, and Begait, respectively. About 11 and 5 genes under selective signals were common for both approaches that were associated with important traits. After genome annotation, we found 41 Gene ontology (GO) terms (12 in biological processes, 8 in cellular components and 11 in the molecular function) and 10 Kyoto Encyclopedia of Genes and Genomes pathways. Several of the candidate genes are involved in the reproduction, body weight, fatty acids, and disease related traits. Our investigation contributes to deliver valuable genetic information and paves the way to design conservation strategy, breed management, genetic improvement, and utilization programs. The genomic resources generated in the study will offer an opportunity for further investigations.

7.
Genes (Basel) ; 10(11)2019 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-31744198

RESUMO

: Detection of selection footprints provides insight into the evolution process and the underlying mechanisms controlling the phenotypic diversity of traits that have been exposed to selection. Selection focused on certain characters, mapping certain genomic regions often shows a loss of genetic diversity with an increased level of homozygosity. Therefore, the runs of homozygosity (ROHs), homozygosity by descent (HBD), and effective population size (Ne) are effective tools for exploring the genetic diversity, understanding the demographic history, foretelling the signature of directional selection, and improving the breeding strategies to use and conserve genetic resources. We characterized the ROH, HBD, Ne, and signature of selection of six Chinese goat populations using single nucleotide polymorphism (SNP) 50K Illumina beadchips. Our results show an inverse relationship between the length and frequency of ROH. A long ROH length, higher level of inbreeding, long HBD segment, and smaller Ne in Guangfeng (GF) goats suggested intensive selection pressure and recent inbreeding in this breed. We identified six reproduction-related genes within the genomic regions with a high ROH frequency, of which two genes overlapped with a putative selection signature. The estimated pair-wise genetic differentiation (FST) among the populations is 9.60% and the inter- and intra-population molecular variations are 9.68% and 89.6%, respectively, indicating low to moderate genetic differentiation. Our selection signatures analysis revealed 54 loci harboring 86 putative candidate genes, with a strong signature of selection. Further analysis showed that several candidate genes, including MARF1, SYCP2,TMEM200C,SF1,ADCY1, and BMP5, are involved in goat fecundity. We identified 11 candidate genes by using cross-population extended haplotype homozygosity (XP-EHH) estimates, of which MARF1 and SF1 are under strong positive selection, as they are differentiated in high and low reproduction groups according to the three approaches used. Gene ontology enrichment analysis revealed that different biological pathways could be involved in the variation of fecundity in female goats. This study provides a new insight into the ROHs patterns for maintenance of within breed diversity and suggests a role of positive selection for genetic variation influencing fecundity in Chinese goat.


Assuntos
Cabras/genética , Haplótipos/genética , Homozigoto , Seleção Genética/genética , Seleção Artificial/genética , Criação de Animais Domésticos , Animais , China , Feminino , Fertilidade/genética , Variação Genética , Endogamia , Masculino , Polimorfismo de Nucleotídeo Único , Densidade Demográfica
8.
Animals (Basel) ; 9(6)2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31200540

RESUMO

Genome-wide linkage disequilibrium is a useful parameter to study quantitative trait locus (QTL) mapping and genetic selection. In many genomic methodologies, effective population size is an important genetic parameter because of its relationship to the loss of genetic variation, increases in inbreeding, the accumulation of mutations, and the effectiveness of selection. In this study, a total of 193 individuals were genotyped to assess the extent of LD and Ne in six Chinese goat populations using the SNP 50K BeadChip. Across the determined autosomal chromosomes, we found an average of 0.02 and 0.23 for r2 and D' values, respectively. The average r2 between all the populations varied little and ranged from 0.055 r2 for the Jining Grey to 0.128 r2 for the Guangfeng, with an overall mean of 0.083. Across the 29 autosomal chromosomes, minor allele frequency (MAF) was highest on chromosome 1 (0.321) and lowest on chromosome 25 (0.309), with an average MAF of 0.317, and showing the lowest (25.5% for Louping) and highest (28.8% for Qingeda) SNP proportions at MAF values > 0.3. The inbreeding coefficient ranged from 0.064 to 0.085, with a mean of 0.075 for all the autosomes. The Jining Grey and Qingeda populations showed higher Ne estimates, highlighting that these animals could have been influenced by artificial selection. Furthermore, a declining recent Ne was distinguished for the Arbas Cashmere and Guangfeng populations, and their estimated values were closer to 64 and 95, respectively, 13 generations ago, which indicates that these breeds were exposed to strong selection. This study provides an insight into valuable genetic information and will open up the opportunity for further genomic selection analysis of Chinese goat populations.

9.
Animals (Basel) ; 9(3)2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30823364

RESUMO

Small ruminants are the critical source of livelihood for rural people to the development of sustainable and environmentally sound production systems. They provided a source of meat, milk, skin, and fiber. The several contributions of small ruminants to the economy of millions of rural people are however being challenged by extreme heat stress difficulties. Heat stress is one of the most detrimental factors contributing to reduced growth, production, reproduction performance, milk quantity and quality, as well as natural immunity, making animals more vulnerable to diseases and even death. However, small ruminants have successfully adapted to this extreme environment and possess some unique adaptive traits due to behavioral, morphological, physiological, and largely genetic bases. This review paper, therefore, aims to provide an integrative explanation of small ruminant adaptation to heat stress and address some responsible candidate genes in adapting to thermal-stressed environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...