Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nature ; 565(7740): E9, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30631162

RESUMO

In this Letter, the PANGAEA repository was referred to incorrectly in the 'Code availability' and 'Data availability' sections of Methods: the link should be https://doi.org/10.1594/PANGAEA.893761 instead of https://doi.org/10.1594/PANGAEA.877266 . In addition, the sentence, "However, the more commonly used system 2 (75 kg ha-1 yr-1) generates roughly the same benefits as system 1…" should read, "However, the more commonly used system 2 (75 kg ha-1 yr-1) generates roughly the same benefits as sugarcane ethanol…" These errors have been corrected in the online versions of the Letter.

3.
Nature ; 564(7735): 249-253, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30542169

RESUMO

Land-use changes are critical for climate policy because native vegetation and soils store abundant carbon and their losses from agricultural expansion, together with emissions from agricultural production, contribute about 20 to 25 per cent of greenhouse gas emissions1,2. Most climate strategies require maintaining or increasing land-based carbon3 while meeting food demands, which are expected to grow by more than 50 per cent by 20501,2,4. A finite global land area implies that fulfilling these strategies requires increasing global land-use efficiency of both storing carbon and producing food. Yet measuring the efficiency of land-use changes from the perspective of greenhouse gas emissions is challenging, particularly when land outputs change, for example, from one food to another or from food to carbon storage in forests. Intuitively, if a hectare of land produces maize well and forest poorly, maize should be the more efficient use of land, and vice versa. However, quantifying this difference and the yields at which the balance changes requires a common metric that factors in different outputs, emissions from different agricultural inputs (such as fertilizer) and the different productive potentials of land due to physical factors such as rainfall or soils. Here we propose a carbon benefits index that measures how changes in the output types, output quantities and production processes of a hectare of land contribute to the global capacity to store carbon and to reduce total greenhouse gas emissions. This index does not evaluate biodiversity or other ecosystem values, which must be analysed separately. We apply the index to a range of land-use and consumption choices relevant to climate policy, such as reforesting pastures, biofuel production and diet changes. We find that these choices can have much greater implications for the climate than previously understood because standard methods for evaluating the effects of land use4-11 on greenhouse gas emissions systematically underestimate the opportunity of land to store carbon if it is not used for agriculture.


Assuntos
Agricultura/estatística & dados numéricos , Biocombustíveis/estatística & dados numéricos , Pegada de Carbono/estatística & dados numéricos , Conservação dos Recursos Naturais/métodos , Dieta/estatística & dados numéricos , Efeito Estufa/prevenção & controle , Solo/química , Animais , Biocombustíveis/provisão & distribuição , Brasil , Sequestro de Carbono , Conservação dos Recursos Naturais/estatística & dados numéricos , Produtos Agrícolas/metabolismo , Fertilizantes/provisão & distribuição , Abastecimento de Alimentos , Agricultura Florestal/estatística & dados numéricos , Florestas , Aquecimento Global/prevenção & controle , Humanos , Gado/metabolismo , Chuva
4.
Nat Commun ; 9(1): 3741, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30209361

RESUMO

This comment raises concerns regarding the way in which a new European directive, aimed at reaching higher renewable energy targets, treats wood harvested directly for bioenergy use as a carbon-free fuel. The result could consume quantities of wood equal to all Europe's wood harvests, greatly increase carbon in the air for decades, and set a dangerous global example.

5.
Curr Opin Environ Sustain ; 2(5-6): 394-403, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24069093

RESUMO

Bio-energy, that is, energy produced from organic non-fossil material of biological origin, is promoted as a substitute for non-renewable (e.g., fossil) energy to reduce greenhouse gas (GHG) emissions and dependency on energy imports. At present, global bio-energy use amounts to approximately 50 EJ/yr, about 10% of humanity's primary energy supply. We here review recent literature on the amount of bio-energy that could be supplied globally in 2050, given current expectations on technology, food demand and environmental targets ('technical potential'). Recent studies span a large range of global bio-energy potentials from ≈30 to over 1000 EJ/yr. In our opinion, the high end of the range is implausible because of (1) overestimation of the area available for bio-energy crops due to insufficient consideration of constraints (e.g., area for food, feed or nature conservation) and (2) too high yield expectations resulting from extrapolation of plot-based studies to large, less productive areas. According to this review, the global technical primary bio-energy potential in 2050 is in the range of 160-270 EJ/yr if sustainability criteria are considered. The potential of bio-energy crops is at the lower end of previously published ranges, while residues from food production and forestry could provide significant amounts of energy based on an integrated optimization ('cascade utilization') of biomass flows.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...