Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(2)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38399248

RESUMO

Hybrid nanoparticles (HNPs) were designed by combining a PLGA core with a lipid shell that incorporated PEG-Lipid conjugates with various functionalities (-RGD, -cRGD, -NH2, and -COOH) to create targeted drug delivery systems. Loaded with a neutral lipid orange dye, the HNPs were extensively characterized using various techniques and investigated for their uptake in human monocyte-derived macrophages (MDMs) using FC and CLSM. Moreover, the best-performing HNPs (i.e., HNP-COOH and HNP-RGD as well as HNP-RGD/COOH mixed) were loaded with the anti-inflammatory drug BRP-201 and prepared in two size ranges (dH ~140 nm and dH ~250 nm). The HNPs were examined further for their stability, degradation, MDM uptake, and drug delivery efficiency by studying the inhibition of 5-lipoxygenase (5-LOX) product formation, whereby HNP-COOH and HNP-RGD both exhibited superior uptake, and the HNP-COOH/RGD (2:1) displayed the highest inhibition.

2.
Int J Pharm X ; 5: 100173, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36908303

RESUMO

Dextran-based polymers, such as ethoxy acetalated dextran (Ace-DEX), are increasingly becoming the focus of research as they offer great potential for the development of polymer-based nanoparticles as drug delivery vehicles. Their major advantages are the facile synthesis, straightforward particle preparation and the pH-dependent degradation of the particles that can be fine-tuned by the degree of acetalation of the polymer. In this study we have shown that Ace-DEX can not only compete against the commonly used and FDA-approved polymer poly(lactic-co-glycolic acid) (PLGA), but even has the potential to outperform it in its encapsulation properties, e.g., for the herein used anti-inflammatory leukotriene biosynthesis inhibitor BRP-187. We used three different methods (microfluidics, batch nanoprecipitation and emulsion solvent evaporation) for the preparation of BRP-187-loaded Ace-DEX nanoparticles to investigate the influence of the formulation technique on the physicochemical properties of the particles. Finally, we evaluated which production method offers the greatest potential for achieving the demands for a successful translation from research into pharmaceutical production by fulfilling the basic requirements, such as reaching a high loading capacity of the particles and excellent reproducibility while being simple and affordable.

3.
Polymers (Basel) ; 13(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34372160

RESUMO

Seven polycaprolactones (PCL) with constant hydrophobicity but a varying degree of crystallinity prepared from the constitutional isomers ε-caprolactone (εCL) and δ-caprolactone (δCL) were utilized to formulate nanoparticles (NPs). The aim was to investigate the effect of the crystallinity of the bulk polymers on the enzymatic degradation of the particles. Furthermore, their efficiency to encapsulate the hydrophobic anti-inflammatory drug BRP-187 and the final in vitro performance of the resulting NPs were evaluated. Initially, high-throughput nanoprecipitation was employed for the εCL and δCL homopolymers to screen and establish important formulation parameters (organic solvent, polymer and surfactant concentration). Next, BRP-187-loaded PCL nanoparticles were prepared by batch nanoprecipitation and characterized using dynamic light scattering, scanning electron microscopy and UV-Vis spectroscopy to determine and to compare particle size, polydispersity, zeta potential, drug loading as well as the apparent enzymatic degradation as a function of the copolymer composition. Ultimately, NPs were examined for their potency in vitro in human polymorphonuclear leukocytes to inhibit the BRP-187 target 5-lipoxygenase-activating protein (FLAP). It was evident by Tukey's multi-comparison test that the degree of crystallinity of copolymers directly influenced their apparent enzymatic degradation and consequently their efficiency to inhibit the drug target.

4.
Polymers (Basel) ; 12(11)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233853

RESUMO

The dual inhibitor of the 5-lipoxygenase-activating protein (FLAP) and the microsomal prostaglandin E2 synthase-1 (mPGES-1), named BRP-187, represents a promising drug candidate due to its improved anti-inflammatory efficacy along with potentially reduced side effects in comparison to non-steroidal anti-inflammatory drugs (NSAIDs). However, BRP-187 is an acidic lipophilic drug and reveals only poor water solubility along with a strong tendency for plasma protein binding. Therefore, encapsulation in polymeric nanoparticles is a promising approach to enable its therapeutic use. With the aim to optimize the encapsulation of BRP-187 into poly(lactic-co-glycolic acid) (PLGA) nanoparticles, a single-phase herringbone microfluidic mixer was used for the particle preparation. Various formulation parameters, such as total flow rates, flow rate ratio, the concentration of the poly(vinyl alcohol) (PVA) as a surfactant, initial polymer concentration, as well as presence of a co-solvent on the final particle size distribution and drug loading, were screened for best particle characteristics and highest drug loading capacities. While the size of the particles remained in the targeted region between 121 and 259 nm with low polydispersities (0.05 to 0.2), large differences were found in the BRP-187 loading capacities (LC = 0.5 to 7.29%) and drug crystal formation during the various formulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...