Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 267: 115637, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33254712

RESUMO

The presence of organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs) was analysed in air particulate matter ≤ 2.5 µm (PM2.5) and ≤10 µm (PM10) collected in the Metropolitan Zone of Mexico Valley (MZMV), during 2013 and 2014, respectively. Spatial and seasonal distributions of PM and their organic content named solvent extracted organic matter (SEOM) were determined. PM mass concentration and SEOM/PM ratios were compared with previous studies in 2006 in Mexico City. PM2.5 concentration was like found in 2006, however, PM10 decreased ∼43%. The SEOM/PM10 ratio was kept constant, suggesting a decrease in SEOM as well as PM10 emitted from natural sources, probably as a result of changes in the land use due to urban growth. A decrease ∼50% SEOM/PM2.5 ratio was observed in the same period, linked to adequate strategies and public policies applied by the local and federal governments to control the organic matter emitted from anthropogenic sources. Seven out of sixteen OCPs and five out of six PBDEs were found. The most common POPs were endosulfan I, endosulfan II, endosulfan sulfate, BDE-47 and BDE-99, present on >90% of the sampling days. OCPs in PM2.5 and PBDEs in PM10 showed seasonal variability. Higher PBDEs concentration in both particle sizes were observed at east and southeast of the MZMV, where one of the biggest landfills and wastewater treatment plants are located. OCPs in PM10 were mainly emitted from agricultural areas located to the southwest, southeast and east of the MZMV. OCPs in PM2.5 showed a regional contribution from the north and introduced into the valley. OCP degradation products were dominant over native OCPs, indicating no fresh OCP use. POPs comparison with other cities was made. Agreements and commissions created by the Mexican government reduced OCPs emissions, however, more effort must be made to control PBDE emission sources.


Assuntos
Poluentes Atmosféricos , Praguicidas , Cidades , Monitoramento Ambiental , Éteres Difenil Halogenados , México , Material Particulado , Política Pública
2.
J Chromatogr A ; 1477: 100-107, 2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-27894697

RESUMO

New clean technologies are needed to determine concentration of organic pollutants without generating more pollution. A method to extract Persistent Organic Pollutants (POPs) from airborne particulate matter was developed using a novel technology recently patented called ultrasound assisted extraction micro-scale cell (UAE-MSC). This technology extracts, filters, collects the sample, and evaporates the solvent, on-line. No sample transfer is needed. The cell minimizes sample manipulation, solvent consumption, waste generation, time, and energy; fulfilling most of the analytical green chemistry protocol. The methodology was optimized applying a centred 23 factorial experimental design. Optimum conditions were used to validate and determine concentration of 16 organochlorine pesticides (OCls) and 6 polybrominated diphenyl ethers (PBDEs). The best conditions achieved were 2 extractions with 5mL (each) of dichloromethane over 5min (each) at 60°C and 80% ultrasound potency. POPs were determined by gas chromatography/mass spectrometry in negative chemical ionization (GC/MS-NCI). Analytical method validation was carried out on airborne particles spiked with POPs at seven concentration levels between 0.5 and 26.9pgm-3. This procedure was done by triplicate (N=21). Recovery, ranged between 65.5±2.3% and 107.5±3.0% for OCls and between 79.1±6.5% and 105.2±3.8% for PBDEs. Linearity (r2) was ≥0.94 for all compounds. Method detection limits, ranged from 0.5 to 2.7pgm-3, while limits of quantification (LOQ), ranged from 1.7 to 9.0pgm-3. A Bias from -18.6% to 9% for PBDEs was observed in the Standard Reference Material (SRM) 2787. SRM 2787 did not contain OCls. OCls recoveries were equivalent by UAE-MSC and Soxhlet methods UAE-MSC optimized extraction conditions reduced 30 times less solvent and decreased the extraction time from several hours to ten minutes, respect to Soxhlet. UAE-MSC was applied to 15 samples of particles less than 2.5µm (PM2.5) from three seasons (warm dry, rainy, and cold dry) collected in five sites around Mexico City. OCls (4,4'-DDE and endrin aldehyde) concentrations ranged from

Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos/análise , Material Particulado/análise , Ultrassom/métodos , Calibragem , Éteres Difenil Halogenados/análise , México , Reprodutibilidade dos Testes , Estações do Ano , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...