Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34681765

RESUMO

Bacillus virus Bam35 is the model Betatectivirus and member of the family Tectiviridae, which is composed of tailless, icosahedral, and membrane-containing bacteriophages. Interest in these viruses has greatly increased in recent years as they are thought to be an evolutionary link between diverse groups of prokaryotic and eukaryotic viruses. Additionally, betatectiviruses infect bacteria of the Bacillus cereus group, which are known for their applications in industry and notorious since it contains many pathogens. Here, we present the first protein-protein interactions (PPIs) network for a tectivirus-host system by studying the Bam35-Bacillus thuringiensis model using a novel approach that integrates the traditional yeast two-hybrid system and high-throughput sequencing (Y2H-HTS). We generated and thoroughly analyzed a genomic library of Bam35's host B. thuringiensis HER1410 and screened interactions with all the viral proteins using different combinations of bait-prey couples. Initial analysis of the raw data enabled the identification of over 4000 candidate interactions, which were sequentially filtered to produce 182 high-confidence interactions that were defined as part of the core virus-host interactome. Overall, host metabolism proteins and peptidases were particularly enriched within the detected interactions, distinguishing this host-phage system from the other reported host-phage PPIs. Our approach also suggested biological roles for several Bam35 proteins of unknown function, including the membrane structural protein P25, which may be a viral hub with a role in host membrane modification during viral particle morphogenesis. This work resulted in a better understanding of the Bam35-B. thuringiensis interaction at the molecular level and holds great potential for the generalization of the Y2H-HTS approach for other virus-host models.


Assuntos
Bacillus thuringiensis/virologia , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Tectiviridae/fisiologia , Proteínas Virais/metabolismo , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta , Mapas de Interação de Proteínas , Saccharomyces cerevisiae/genética , Tectiviridae/patogenicidade , Técnicas do Sistema de Duplo-Híbrido , Proteínas Virais/genética , Vírion/patogenicidade , Vírion/fisiologia
2.
Ann N Y Acad Sci ; 1447(1): 97-109, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31162694

RESUMO

DNA viruses with efficient host genome integration capability were unknown in eukaryotes until recently. The discovery of virophages, satellite-like DNA viruses that depend on lytic giant viruses that infect protists, revealed a genetically diverse group of viruses with high genome mobility. Virophages can act as strong inhibitors of their associated giant viruses, and the resulting beneficial effects on their unicellular hosts resemble a population-based antiviral defense mechanism. By comparing various aspects of genome-integrating virophages, in particular the virophage mavirus, with other mobile genetic elements and parasite-derived defense mechanisms in eukaryotes and prokaryotes, we show that virophages share many features with other host-parasite systems. Yet, the dual lifestyle exhibited by mavirus remains unprecedented among eukaryotic DNA viruses, with potentially far-reaching ecological and evolutionary consequences for the host.


Assuntos
Genoma Viral/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Virófagos/genética , Virófagos/metabolismo , Animais , Humanos
3.
Bio Protoc ; 8(1): e2678, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34179232

RESUMO

This protocol analyzes the direct interaction between two DNA-binding proteins by pull-down co-immunoprecipitation. One of the proteins is overexpressed in E. coli as HA-tagged recombinant protein and cell-free extracts are immunoprecipitated in HA-affinity resin. Cell extracts are treated with nuclease to degrade DNA and RNA, which rules out nucleic acid-mediated indirect interaction. Then, a second immunoprecipitation step is performed using the purified putative partner protein. Co-immunoprecipitated proteins can be detected either by Coomassie Blue staining and/or Western blotting (WB) if a specific antibody is available. Moreover, many DNA/RNA binding proteins are highly electropositive, which can hinder WB under standard conditions, as has been shown in histones and histone-like proteins. In this case, we show that the high isoelectric point of the putative partner results in a poor transfer. Tips to troubleshot WB transfer of highly electropositive DNA-binding proteins are provided.

4.
Cell Rep ; 21(6): 1574-1587, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29117562

RESUMO

Family B DNA polymerases (PolBs) play a central role during replication of viral and cellular chromosomes. Here, we report the discovery of a third major group of PolBs, which we denote primer-independent PolB (piPolB), that might be a link between the previously known protein-primed and RNA/DNA-primed PolBs. PiPolBs are encoded by highly diverse mobile genetic elements, pipolins, integrated in the genomes of diverse bacteria and also present as circular plasmids in mitochondria. Biochemical characterization showed that piPolB displays efficient DNA polymerization activity that can use undamaged and damaged templates and is endowed with proofreading and strand displacement capacities. Remarkably, the protein is also capable of template-dependent de novo DNA synthesis, i.e., DNA-priming activity, thereby breaking the long-standing dogma that replicative DNA polymerases require a pre-existing primer for DNA synthesis. We suggest that piPolBs are involved in self-replication of pipolins and may also contribute to bacterial DNA damage tolerance.


Assuntos
Primers do DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , DNA/biossíntese , Sequência de Aminoácidos , Bacteriófago M13/genética , DNA de Cadeia Simples/biossíntese , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/classificação , DNA Polimerase Dirigida por DNA/genética , Bases de Dados Genéticas , Escherichia coli/enzimologia , Filogenia , Plasmídeos/genética , Plasmídeos/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Transcrição Gênica
5.
J Virol ; 91(19)2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28747494

RESUMO

The family Tectiviridae comprises a group of tailless, icosahedral, membrane-containing bacteriophages that can be divided into two groups by their hosts, either Gram-negative or Gram-positive bacteria. While the first group is composed of PRD1 and nearly identical well-characterized lytic viruses, the second one includes more variable temperate phages, like GIL16 or Bam35, whose hosts are Bacillus cereus and related Gram-positive bacteria. In the genome of Bam35, nearly half of the 32 annotated open reading frames (ORFs) have no homologs in databases (ORFans), being putative proteins of unknown function, which hinders the understanding of their biology. With the aim of increasing knowledge about the viral proteome, we carried out a comprehensive yeast two-hybrid analysis of all the putative proteins encoded by the Bam35 genome. The resulting protein interactome comprised 76 unique interactions among 24 proteins, of which 12 have an unknown function. These results suggest that the P17 protein is the minor capsid protein of Bam35 and P24 is the penton protein, with the latter finding also being supported by iterative threading protein modeling. Moreover, the inner membrane transglycosylase protein P26 could have an additional structural role. We also detected interactions involving nonstructural proteins, such as the DNA-binding protein P1 and the genome terminal protein (P4), which was confirmed by coimmunoprecipitation of recombinant proteins. Altogether, our results provide a functional view of the Bam35 viral proteome, with a focus on the composition and organization of the viral particle.IMPORTANCE Tailless viruses of the family Tectiviridae can infect commensal and pathogenic Gram-positive and Gram-negative bacteria. Moreover, they have been proposed to be at the evolutionary origin of several groups of large eukaryotic DNA viruses and self-replicating plasmids. However, due to their ancient origin and complex diversity, many tectiviral proteins are ORFans of unknown function. Comprehensive protein-protein interaction (PPI) analysis of viral proteins can eventually disclose biological mechanisms and thus provide new insights into protein function unattainable by studying proteins one by one. Here we comprehensively describe intraviral PPIs among tectivirus Bam35 proteins determined using multivector yeast two-hybrid screening, and these PPIs were further supported by the results of coimmunoprecipitation assays and protein structural models. This approach allowed us to propose new functions for known proteins and hypothesize about the biological role of the localization of some viral ORFan proteins within the viral particle that will be helpful for understanding the biology of tectiviruses infecting Gram-positive bacteria.

6.
Nucleic Acids Res ; 44(20): 9733-9744, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27466389

RESUMO

Protein-primed replication constitutes a generalized mechanism to initiate DNA or RNA synthesis in a number of linear genomes of viruses, linear plasmids and mobile elements. By this mechanism, a so-called terminal protein (TP) primes replication and becomes covalently linked to the genome ends. Bam35 belongs to a group of temperate tectiviruses infecting Gram-positive bacteria, predicted to replicate their genomes by a protein-primed mechanism. Here, we characterize Bam35 replication as an alternative model of protein-priming DNA replication. First, we analyze the role of the protein encoded by the ORF4 as the TP and characterize the replication mechanism of the viral genome (TP-DNA). Indeed, full-length Bam35 TP-DNA can be replicated using only the viral TP and DNA polymerase. We also show that DNA replication priming entails the TP deoxythymidylation at conserved tyrosine 194 and that this reaction is directed by the third base of the template strand. We have also identified the TP tyrosine 172 as an essential residue for the interaction with the viral DNA polymerase. Furthermore, the genetic information of the first nucleotides of the genome can be recovered by a novel single-nucleotide jumping-back mechanism. Given the similarities between genome inverted terminal repeats and the genes encoding the replication proteins, we propose that related tectivirus genomes can be replicated by a similar mechanism.


Assuntos
Replicação do DNA , DNA Viral , Genoma Viral , Tectiviridae/fisiologia , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Fagos Bacilares/fisiologia , Sequência de Bases , Sítios de Ligação , Fases de Leitura Aberta/genética , Ligação Proteica , Proteínas Virais/química
7.
Proc Natl Acad Sci U S A ; 112(27): E3476-84, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26100910

RESUMO

DNA polymerases (DNAPs) responsible for genome replication are highly faithful enzymes that nonetheless cannot deal with damaged DNA. In contrast, translesion synthesis (TLS) DNAPs are suitable for replicating modified template bases, although resulting in very low-fidelity products. Here we report the biochemical characterization of the temperate bacteriophage Bam35 DNA polymerase (B35DNAP), which belongs to the protein-primed subgroup of family B DNAPs, along with phage Φ29 and other viral and mobile element polymerases. B35DNAP is a highly faithful DNAP that can couple strand displacement to processive DNA synthesis. These properties allow it to perform multiple displacement amplification of plasmid DNA with a very low error rate. Despite its fidelity and proofreading activity, B35DNAP was able to successfully perform abasic site TLS without template realignment and inserting preferably an A opposite the abasic site (A rule). Moreover, deletion of the TPR2 subdomain, required for processivity, impaired primer extension beyond the abasic site. Taken together, these findings suggest that B35DNAP may perform faithful and processive genome replication in vivo and, when required, TLS of abasic sites.


Assuntos
Dano ao DNA , Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas Virais/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Sequência de Bases , Replicação do DNA/genética , DNA Viral/genética , DNA Viral/metabolismo , DNA Polimerase Dirigida por DNA/genética , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Polimerização , Proteínas Virais/genética
8.
Glia ; 63(6): 987-1004, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25731131

RESUMO

The study of factors that regulate the survival, proliferation, and differentiation of neural precursor cells (NPCs) is essential to understand neural development as well as brain regeneration. The Nuclear Factor of Activated T Cells (NFAT) is a family of transcription factors that can affect these processes besides playing key roles during development, such as stimulating axonal growth in neurons, maturation of immune system cells, heart valve formation, and differentiation of skeletal muscle and bone. Interestingly, NFAT signaling can also promote cell differentiation in adults, participating in tissue regeneration. The goal of the present study is to evaluate the expression of NFAT isoforms in NPCs, and to investigate its possible role in NPC survival, proliferation, migration, and differentiation. Our findings indicate that NFAT proteins are active not only in neurogenic brain regions such as hippocampus and subventricular zone (SVZ), but also in cultured NPCs. The inhibition of NFAT activation with the peptide VIVIT reduced neurosphere size and cell density in NPC cultures by decreasing proliferation and increasing cell death. VIVIT also decreased NPC migration and differentiation of astrocytes and neurons from NPCs. In addition, we identified NFATc3 as a predominant NFAT isoform in NPC cultures, finding that a constitutively-active form of NFATc3 expressed by adenoviral infection reduces NPC proliferation, stimulates migration, and is a potent inducer of NPC differentiation into astrocytes and neurons. In summary, our work uncovers active roles for NFAT signaling in NPC survival, proliferation and differentiation, and highlights its therapeutic potential for tissue regeneration.


Assuntos
Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Fatores de Transcrição NFATC/metabolismo , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Adesão Celular/fisiologia , Morte Celular/fisiologia , Células Cultivadas , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Isoformas de Proteínas , RNA Mensageiro/metabolismo , Transdução de Sinais , Nicho de Células-Tronco/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...