Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(49): 33436-33442, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34926893

RESUMO

The presence or absence of liquid-liquid phase separation (LLPS) in aerosol particles containing oxidized organic species and inorganic salts affects particle morphology and influences uptake into, diffusion through, and reactivity within those particles. We report here an accessible method, similar to ice core analyses, using solutions that are relevant for both aerosol chemical systems and aqueous two-phase extraction systems and contain ammonium sulfate and one of eight alcohols (methanol, ethanol, 1-propanol, 2-propanol, 2-butaonol, 3-methyl-2-butanol, 1,2-propanediol, or 1,3-propanediol) frozen in articulated (bendable) straws to probe LLPS. For alcohols with negative octanol-water partitioning coefficient (K OW) values and O/C ratios ≥0.5, no LLPS occurs, while for alcohols with positive K OW values and O/C ratios ≤0.33, phase separation always occurs, both findings consistent with observations using different experimental techniques. When a third species, glyoxal, is added, the glyoxal stays in the aqueous phase, regardless of whether LLPS occurs. When phase separation occurs, the glyoxal forms a strong intermolecular interaction with the sulfate ion, red-shifting the ν3(SO4 2-) peak by 15 cm-1. These results provide evidence of chemical interactions within phase-separated systems that have implications for understanding chemical reactivity within those, and related, systems.

2.
Environ Sci Technol ; 49(23): 13825-34, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26248160

RESUMO

Nitrous acid (HONO) is a photochemical source of hydroxyl radical and nitric oxide in the atmosphere that stems from abiotic and biogenic processes, including the activity of ammonia-oxidizing soil microbes. HONO fluxes were measured from agricultural and urban soil in mesocosm studies aimed at characterizing biogenic sources and linking them to indigenous microbial consortia. Fluxes of HONO from agricultural and urban soil were suppressed by addition of a nitrification inhibitor and enhanced by amendment with ammonium (NH4(+)), with peaks at 19 and 8 ng m(-2) s(-1), respectively. In addition, both agricultural and urban soils were observed to convert (15)NH4(+) to HO(15)NO. Genomic surveys of soil samples revealed that 1.5-6% of total expressed 16S rRNA sequences detected belonged to known ammonia oxidizing bacteria and archaea. Peak fluxes of HONO were directly related to the abundance of ammonia-oxidizer sequences, which in turn depended on soil pH. Peak HONO fluxes under fertilized conditions are comparable in magnitude to fluxes reported during field campaigns. The results suggest that biogenic HONO emissions will be important in soil environments that exhibit high nitrification rates (e.g., agricultural soil) although the widespread occurrence of ammonia oxidizers implies that biogenic HONO emissions are also possible in the urban and remote environment.


Assuntos
Amônia/metabolismo , Archaea/metabolismo , Consórcios Microbianos/genética , Ácido Nitroso , Microbiologia do Solo , Agricultura , Archaea/genética , Atmosfera/química , Betaproteobacteria/genética , Betaproteobacteria/metabolismo , Genômica/métodos , Indiana , Consórcios Microbianos/fisiologia , Nitrificação , Isótopos de Nitrogênio/análise , Ácido Nitroso/metabolismo , Oxirredução , RNA Ribossômico 16S/genética , Solo/química , Urbanização
3.
Environ Sci Technol ; 48(20): 11991-2001, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25271384

RESUMO

Nitrate (NO3(-)) is an abundant component of aerosols, boundary layer surface films, and surface water. Photolysis of NO3(-) leads to NO2 and HONO, both of which play important roles in tropospheric ozone and OH production. Field and laboratory studies suggest that NO3¯ photochemistry is a more important source of HONO than once thought, although a mechanistic understanding of the variables controlling this process is lacking. We present results of cavity-enhanced absorption spectroscopy measurements of NO2 and HONO emitted during photodegradation of aqueous NO3(-) under acidic conditions. Nitrous acid is formed in higher quantities at pH 2-4 than expected based on consideration of primary photochemical channels alone. Both experimental and modeled results indicate that the additional HONO is not due to enhanced NO3(-) absorption cross sections or effective quantum yields, but rather to secondary reactions of NO2 in solution. We find that NO2 is more efficiently hydrolyzed in solution when it is generated in situ during NO3(-) photolysis than for the heterogeneous system where mass transfer of gaseous NO2 into bulk solution is prohibitively slow. The presence of nonchromophoric OH scavengers that are naturally present in the environment increases HONO production 4-fold, and therefore play an important role in enhancing daytime HONO formation from NO3(-) photochemistry.


Assuntos
Nitratos/química , Dióxido de Nitrogênio/química , Ácido Nitroso/química , Fotólise , Aerossóis/química , Óxidos de Nitrogênio/química , Fotoquímica/métodos , Soluções/química , Água/química
4.
Environ Sci Technol ; 48(1): 375-83, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24328088

RESUMO

Nitrous acid (HONO) is an important OH radical source that is formed on both ground and aerosol surfaces in the well-mixed boundary layer. Large uncertainties remain in quantifying HONO sinks and determining the mechanism of HONO uptake onto surfaces. We report here the first laboratory determination of HONO uptake coefficients onto actual soil under atmospheric conditions using a coated-wall flow tube coupled to a highly sensitive chemical ionization mass spectrometer (CIMS). Uptake coefficients for HONO decrease with increasing RH from (2.5 ± 0.4) × 10(-4) at 0% RH to (1.1 ± 0.4) × 10(-5) at 80% RH. A kinetics model of competitive adsorption of HONO and water onto the particle surfaces fits the dependence of the HONO uptake coefficients on the initial HONO concentration and relative humidity. However, a multiphase resistor model based on the physical and chemical processes affecting HONO uptake is more flexible as it accounts for the pH dependence of HONO uptake and bulk diffusion in the soil matrix. Fourier transform infrared (FTIR) spectrometry and cavity-enhanced absorption spectroscopy (CEAS) studies indicate that NO and N2O (16% and 13% yield, respectively) rather than NO2 are the predominant gas phase products, while NO2(-) and NO3(-) were detected on the surface post-exposure. Results are compared to uptake coefficients inferred from models and field measurements, and the atmospheric implications are discussed.


Assuntos
Ácido Nitroso/química , Solo/química , Adsorção , Gases/química , Cinética , Nitratos/química , Óxido Nítrico/química , Nitritos/química , Análise Espectral/métodos , Propriedades de Superfície , Água/química
5.
J Chem Phys ; 138(22): 224306, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23781794

RESUMO

The reaction of Cl atoms with CH3D proceeds either by abstraction of hydrogen to produce HCl + CH2D or by abstraction of deuterium to produce DCl + CH3. Using Cl atoms with different amounts of translational energy, produced by photolysis of Cl2 with 309, 355, or 416 nm light, reveals the influence of translational energy on the relative reaction probability for the two channels. These measurements give an estimate of the energy barrier for the reaction for comparison to theory and indicate that tunneling is the dominant reaction mechanism at low collision energies. Adding two quanta of C-H stretching vibration causes the reaction to proceed readily at all collision energies. Detecting the vibrational state of the CH2D product shows that vibrational energy initially in the surviving C-H bond appears as vibrational excitation of the product, an example of spectator behavior in the reaction. The reaction produces both stretch and stretch-bend excited products except at the lowest collision energy. A subtle variation in the reaction probability of the lowest energy rotational states with translational energy may reflect the presence of a van der Waals well in the entrance channel.

6.
J Phys Chem A ; 112(39): 9448-53, 2008 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-18680264

RESUMO

State-resolved reactions of CH3D molecules containing both C-H and C-D stretching excitation with Cl atoms provide new vibrational spectroscopy and probe the consumption and disposal of vibrational energy in the reactions. The vibrational action spectra have three different components, the combination of the C-H symmetric stretch and the C-D stretch (nu1 + nu2), the combination of the C-D stretch and the C-H antisymmetric stretch (nu2 + nu4), and the combination of the C-D stretch and the first overtone of the CH3 bend (nu2 + 2nu5). The simulation for the previously unanalyzed (nu2 + nu4) state yields a band center of nu0 = 5215.3 cm(-1), rotational constants of A = 5.223 cm(-1) and B = 3.803 cm(-1), and a Coriolis coupling constant of zeta = 0.084. The reaction dynamics largely follow a spectator picture in which the surviving bond retains its initial vibrational excitation. In at least 80% of the reactive encounters of vibrationally excited CH3D with Cl, cleavage of the C-H bond produces CH2D radicals with an excited C-D stretch, and cleavage of the C-D bond produces CH3 radicals with an excited C-H stretch. Deviations from the spectator picture seem to reflect mixing in the initially prepared eigenstates and, possibly, collisional coupling during the reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...