Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 4: e2154, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27441114

RESUMO

Studies of deep-sea benthic communities have largely focused on particular (macro) habitats in isolation, with few studies considering multiple habitats simultaneously in a comparable manner. Compared to mega-epifauna and macrofauna, much less is known about habitat-related variation in meiofaunal community attributes (abundance, diversity and community structure). Here, we investigated meiofaunal community attributes in slope, canyon, seamount, and seep habitats in two regions on the continental slope of New Zealand (Hikurangi Margin and Bay of Plenty) at four water depths (700, 1,000, 1,200 and 1,500 m). We found that patterns were not the same for each community attribute. Significant differences in abundance were consistent across regions, habitats, water and sediment depths, while diversity and community structure only differed between sediment depths. Abundance was higher in canyon and seep habitats compared with other habitats, while between sediment layer, abundance and diversity were higher at the sediment surface. Our findings suggest that meiofaunal community attributes are affected by environmental factors that operate on micro- (cm) to meso- (0.1-10 km), and regional scales (> 100 km). We also found a weak, but significant, correlation between trawling intensity and surface sediment diversity. Overall, our results indicate that variability in meiofaunal communities was greater at small scale than at habitat or regional scale. These findings provide new insights into the factors controlling meiofauna in these deep-sea habitats and their potential vulnerability to anthropogenic activities.

2.
PLoS One ; 8(5): e64438, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23717614

RESUMO

Marine mammals are regularly reported as bycatch in commercial and artisanal fisheries, but data are often insufficient to allow assessment of these incidental mortalities. Observer coverage of the mackerel trawl fishery in New Zealand waters between 1995 and 2011 allowed evaluation of common dolphin Delphinus delphis bycatch on the North Island west coast, where this species is the most frequently caught cetacean. Observer data were used to develop a statistical model to estimate total captures and explore covariates related to captures. A two-stage Bayesian hurdle model was used, with a logistic generalised linear model predicting whether any common dolphin captures occurred on a given tow of the net, and a zero-truncated Poisson distribution to estimate the number of dolphin captures, given that there was a capture event. Over the 16-year study period, there were 119 common dolphin captures reported on 4299 observed tows. Capture events frequently involved more than one individual, with a maximum of nine common dolphin observed caught in a single tow. There was a peak of 141 estimated common dolphin captures (95% c.i.: 56 to 276; 6.27 captures per 100 tows) in 2002-03, following the marked expansion in annual effort in this fishery to over 2000 tows. Subsequently, the number of captures fluctuated although fishing effort remained relatively high. Of the observed capture events, 60% were during trawls where the top of the net (headline) was <40 m below the surface, and the model determined that this covariate best explained common dolphin captures. Increasing headline depth by 21 m would halve the probability of a dolphin capture event on a tow. While lack of abundance data prevents assessment of the impact of these mortalities on the local common dolphin population, a clear recommendation from this study is the increasing of headline depth to reduce common dolphin captures.


Assuntos
Golfinhos , Pesqueiros , Animais , Teorema de Bayes , Modelos Teóricos , Nova Zelândia , Distribuição de Poisson
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...