Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 763, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992038

RESUMO

Climate change and population growth are putting increasing pressure on global food security. The development of high-yielding varieties for important crops such as wheat is crucial to meet these challenges. The basis for this is extensive exploitation of beneficial genetic variation resting in genebanks around the world. Selecting suitable donor genotypes from the vast number of wheat accessions stored in genebanks is a difficult task and depends critically on the density of information on the performance of individual accessions. Therefore, this study aimed to access phenotypic data from the Czech genebank, storing over 13,000 wheat accessions. We curated and analyzed data on heading date, plant height, and thousand grain weight for more than one-third of all available accessions regenerated across 70 years. The data underwent analysis using a linear mixed model, revealing high quality of curated data with heritability reaching 99%. The raw data, but also derived data such as the best linear unbiased estimations, are now available for the wheat collection of the Czech genebank for research and breeding.


Assuntos
Fenótipo , Melhoramento Vegetal , Triticum , República Tcheca , Variação Genética , Genótipo , Triticum/genética
2.
Front Plant Sci ; 14: 1270298, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38273944

RESUMO

Globally, wheat (Triticum aestivum L.) is a major source of proteins in human nutrition despite its unbalanced amino acid composition. The low lysine content in the protein fraction of wheat can lead to protein-energy-malnutrition prominently in developing countries. A promising strategy to overcome this problem is to breed varieties which combine high protein content with high lysine content. Nevertheless, this requires the incorporation of yet undefined donor genotypes into pre-breeding programs. Genebank collections are suspected to harbor the needed genetic diversity. In the 1970s, a large-scale screening of protein traits was conducted for the wheat genebank collection in Gatersleben; however, this data has been poorly mined so far. In the present study, a large historical dataset on protein content and lysine content of 4,971 accessions was curated, strictly corrected for outliers as well as for unreplicated data and consolidated as the corresponding adjusted entry means. Four genomic prediction approaches were compared based on the ability to accurately predict the traits of interest. High-quality phenotypic data of 558 accessions was leveraged by engaging the best performing prediction model, namely EG-BLUP. Finally, this publication incorporates predicted phenotypes of 7,651 accessions of the winter wheat collection. Five accessions were proposed as donor genotypes due to the combination of outstanding high protein content as well as lysine content. Further investigation of the passport data suggested an association of the adjusted lysine content with the elevation of the collecting site. This publicly available information can facilitate future pre-breeding activities.

3.
Theor Appl Genet ; 135(12): 4391-4407, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36182979

RESUMO

KEY MESSAGE: Genomic prediction of genebank accessions benefits from the consideration of additive-by-additive epistasis and subpopulation-specific marker effects. Wheat (Triticum aestivum L.) and other species of the Triticum genus are well represented in genebank collections worldwide. The substantial genetic diversity harbored by more than 850,000 accessions can be explored for their potential use in modern plant breeding. Characterization of these large number of accessions is constrained by the required resources, and this fact limits their use so far. This limitation might be overcome by engaging genomic prediction. The present study compared ten different genomic prediction approaches to the prediction of four traits, namely flowering time, plant height, thousand grain weight, and yellow rust resistance, in a diverse set of 7745 accession samples from Germany's Federal ex situ genebank at the Leibniz Institute of Plant Genetics and Crop Plant Research in Gatersleben. Approaches were evaluated based on prediction ability and robustness to the confounding influence of strong population structure. The authors propose the wide application of extended genomic best linear unbiased prediction due to the observed benefit of incorporating additive-by-additive epistasis. General and subpopulation-specific additive ridge regression best linear unbiased prediction, which accounts for subpopulation-specific marker-effects, was shown to be a good option if contrasting clusters are encountered in the analyzed collection. The presented findings reaffirm that the trait's genetic architecture as well as the composition and relatedness of the training set and test set are major driving factors for the accuracy of genomic prediction.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Marcadores Genéticos , Genótipo , Genômica , Fenótipo , Genoma de Planta , Seleção Genética
4.
Front Plant Sci ; 12: 689825, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194460

RESUMO

The use of genetic resources in breeding is considered critical to ensure future selection gain, but the absence of important adaptation genes often masks the breeding value of genetic resources for grain yield. Testing genetic resources in a hybrid background has been proposed as a solution to obtain unbiased estimates of breeding values for grain yield. In our study, we evaluated the suitability of European wheat elite lines for implementing this hybrid strategy, focusing on maximizing seed yield in hybrid production and reducing masking effects due to susceptibility to lodging, yellow rust, and leaf rust of genetic resources. Over a 3-year period, 63 wheat elite female lines were crossed with eight male plant genetic resources in a multi-environment field experiment to evaluate seed yield on the female side. Then, the resulting hybrids and their parents were tested for plant height, lodging, and susceptibility to yellow rust and leaf rust in a further field experiment at multiple locations. We found that seed yield was strongly influenced by the elite wheat line choice in addition to environment and observed substantial differences among elite tester lines in their ability to reduce susceptibility to lodging, yellow rust, and leaf rust when the hybrid strategy was implemented. Consequently, breeders can significantly increase the amount of hybrid seed produced in wide crosses through appropriate tester choice and adapt genetic resources of wheat with the hybrid strategy to the modern cropping system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...