Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 112(43): 10843-55, 2008 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-18828580

RESUMO

Butanol, an alcohol which can be produced from biomass sources, has received recent interest as an alternative to gasoline for use in spark ignition engines and as a possible blending compound with fossil diesel or biodiesel. Therefore, the autoignition of the four isomers of butanol (1-butanol, 2-butanol, iso-butanol, and tert-butanol) has been experimentally studied at high temperatures in a shock tube, and a kinetic mechanism for description of their high-temperature oxidation has been developed. Ignition delay times for butanol/oxygen/argon mixtures have been measured behind reflected shock waves at temperatures and pressures ranging from approximately 1200 to 1800 K and 1 to 4 bar. Electronically excited OH emission and pressure measurements were used to determine ignition-delay times. The influence of temperature, pressure, and mixture composition on ignition delay has been characterized. A detailed kinetic mechanism has been developed to describe the oxidation of the butanol isomers and validated by comparison to the shock-tube measurements. Reaction flux and sensitivity analysis illustrates the relative importance of the three competing classes of consumption reactions during the oxidation of the four butanol isomers: dehydration, unimolecular decomposition, and H-atom abstraction. Kinetic modeling indicates that the consumption of 1-butanol and iso-butanol, the most reactive isomers, takes place primarily by H-atom abstraction resulting in the formation of radicals, the decomposition of which yields highly reactive branching agents, H atoms and OH radicals. Conversely, the consumption of tert-butanol and 2-butanol, the least reactive isomers, takes place primarily via dehydration, resulting in the formation of alkenes, which lead to resonance stabilized radicals with very low reactivity. To our knowledge, the ignition-delay measurements and oxidation mechanism presented here for 2-butanol, iso-butanol, and tert-butanol are the first of their kind.


Assuntos
Butanóis/química , Simulação por Computador , Modelos Químicos , Cinética , Oxirredução , Análise de Regressão , Estereoisomerismo , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...