Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Phys Rev Lett ; 131(2): 026301, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37505967

RESUMO

Controlling thermal transport in insulators and semiconductors is crucial for many technological fields such as thermoelectrics and thermal insulation, for which a low thermal conductivity (κ) is desirable. A major obstacle for realizing low κ materials is Rayleigh's law, which implies that acoustic phonons, which carry most of the heat, are insensitive to scattering by point defects at low energy. We demonstrate, with large scale simulations on tens of millions of atoms, that isotropic long-range spatial correlations in the defect distribution can dramatically reduce phonon lifetimes of important low-frequency heat-carrying modes, leading to a large reduction of κ-potentially an order of magnitude at room temperature. We propose a general and quantitative framework for controlling thermal transport in complex functional materials through structural spatial correlations, and we establish the optimal functional form of spatial correlations that minimize κ. We end by briefly discussing experimental realizations of various correlated structures.

3.
Phys Rev Lett ; 118(7): 077201, 2017 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-28256891

RESUMO

Bulk rutile RuO_{2} has long been considered a Pauli paramagnet. Here we report that RuO_{2} exhibits a hitherto undetected lattice distortion below approximately 900 K. The distortion is accompanied by antiferromagnetic order up to at least 300 K with a small room temperature magnetic moment of approximately 0.05µ_{B} as evidenced by polarized neutron diffraction. Density functional theory plus U (DFT+U) calculations indicate that antiferromagnetism is favored even for small values of the Hubbard U of the order of 1 eV. The antiferromagnetism may be traced to a Fermi surface instability, lifting the band degeneracy imposed by the rutile crystal field. The combination of high Néel temperature and small itinerant moments make RuO_{2} unique among ruthenate compounds and among oxide materials in general.

4.
Nat Commun ; 7: 13774, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27941761

RESUMO

A pseudospin-1/2 Mott phase on a honeycomb lattice is proposed to host the celebrated two-dimensional Kitaev model which has an elusive quantum spin liquid ground state, and fascinating physics relevant to the development of future templates towards topological quantum bits. Here we report a comprehensive, atomically resolved real-space study by scanning transmission electron and scanning tunnelling microscopies on a novel layered material displaying Kitaev physics, α-RuCl3. Our local crystallography analysis reveals considerable variations in the geometry of the ligand sublattice in thin films of α-RuCl3 that opens a way to realization of a spatially inhomogeneous magnetic ground state at the nanometre length scale. Using scanning tunnelling techniques, we observe the electronic energy gap of ≈0.25 eV and intra-unit cell symmetry breaking of charge distribution in individual α-RuCl3 surface layer. The corresponding charge-ordered pattern has a fine structure associated with two different types of charge disproportionation at Cl-terminated surface.

5.
Phys Rev Lett ; 114(21): 217002, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-26066452

RESUMO

We apply a recently developed method combining first principles based Wannier functions with solutions to the Bogoliubov-de Gennes equations to the problem of interpreting STM data in cuprate superconductors. We show that the observed images of Zn on the surface of Bi_{2}Sr_{2}CaCu_{2}O_{8} can only be understood by accounting for the tails of the Cu Wannier functions, which include significant weight on apical O sites in neighboring unit cells. This calculation thus puts earlier crude "filter" theories on a microscopic foundation and solves a long-standing puzzle. We then study quasiparticle interference phenomena induced by out-of-plane weak potential scatterers, and show how patterns long observed in cuprates can be understood in terms of the interference of Wannier functions above the surface. Our results show excellent agreement with experiment and enable a better understanding of novel phenomena in the cuprates via STM imaging.

6.
Phys Rev Lett ; 114(10): 107002, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25815960

RESUMO

We consider the effect of glide-plane symmetry of the Fe-pnictogen/chalcogen layer in Fe-based superconductors on pairing in spin fluctuation models. Recent theories have proposed that so-called η-pairing states with nonzero total momentum can be realized and possess exotic properties such as odd parity spin singlet symmetry and time-reversal symmetry breaking. Here we show that η pairing is inevitable when there is orbital weight at the Fermi level from orbitals with even and odd mirror reflection symmetry in z; however, by explicit calculation, we conclude that the gap function that appears in observable quantities is identical to that found in earlier, 1 Fe per unit cell pseudocrystal momentum calculations.

7.
Phys Rev Lett ; 108(12): 127203, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22540620

RESUMO

Combining thermodynamic measurements with theoretical calculations we demonstrate that the iridates A2IrO3 (A=Na, Li) are magnetically ordered Mott insulators where the magnetism of the effective spin-orbital S=1/2 moments can be captured by a Heisenberg-Kitaev (HK) model with interactions beyond nearest-neighbor exchange. Experimentally, we observe an increase of the Curie-Weiss temperature from θ≈-125 K for Na2IrO3 to θ≈-33 K for Li2IrO3, while the ordering temperature remains roughly the same T(N)≈15 K. Using functional renormalization group calculations we show that this evolution of θ and T(N) as well as the low temperature zigzag magnetic order can be captured within this extended HK model. We estimate that Na2IrO3 is deep in a magnetically ordered regime, while Li2IrO3 appears to be close to a spin-liquid regime.

8.
Phys Rev Lett ; 105(20): 207201, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-21231259

RESUMO

We report direct evidence of room-temperature ferromagnetic ordering in O-deficient ZnO:Cu films by using soft x-ray magnetic circular dichroism and x-ray absorption. Our measurements have revealed unambiguously two distinct features of Cu atoms associated with (i) magnetically ordered Cu ions present only in the oxygen-deficient samples and (ii) magnetically disordered regular Cu2+ ions present in all the samples. We find that a sufficient amount of both oxygen vacancies (V(O)) and Cu impurities is essential to the observed ferromagnetism, and a non-negligible portion of Cu impurities is uninvolved in the magnetic order. Based on first-principles calculations, we propose a microscopic "indirect double-exchange" model, in which alignments of localized large moments of Cu in the vicinity of the V(O) are mediated by the large-sized vacancy orbitals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...