Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(9): 096901, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38489613

RESUMO

We study noise amplification by asymmetric dyads in freely expanding non-Hermitian optical systems. We show that modifications of the pumping strengths can counteract bias from natural imperfections of the system's hardware while couplings between dyads lead to systems with nonuniform statistical distributions. Our results suggest that asymmetric non-Hermitian dyads are promising candidates for efficient sensors and ultrafast random number generators. We propose that the integrated light emission from such asymmetric dyads can be efficiently used for analog all-optical degenerative diffusion models of machine learning to overcome the digital limitations of such models in processing speed and energy consumption.

2.
Phys Rev Lett ; 129(1): 015301, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35841547

RESUMO

We show that the simultaneous driving of a polariton condensate with both nonresonant and nth order resonant pump frequencies allows for a generic mechanism of breather formation. From this we construct for the second order resonance a family of exotic breathers with nontrivial discrete order of rotational symmetry. Finally, we demonstrate the spontaneous emergence of both crystalline and glassy orderings of lattices of polygonal breathers, depending on the degree of polygonal excitations at the lattice sites.

3.
Nat Commun ; 12(1): 2120, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33837211

RESUMO

Vorticity is a key ingredient to a broad variety of fluid phenomena, and its quantised version is considered to be the hallmark of superfluidity. Circulating flows that correspond to vortices of a large topological charge, termed giant vortices, are notoriously difficult to realise and even when externally imprinted, they are unstable, breaking into many vortices of a single charge. In spite of many theoretical proposals on the formation and stabilisation of giant vortices in ultra-cold atomic Bose-Einstein condensates and other superfluid systems, their experimental realisation remains elusive. Polariton condensates stand out from other superfluid systems due to their particularly strong interparticle interactions combined with their non-equilibrium nature, and as such provide an alternative testbed for the study of vortices. Here, we non-resonantly excite an odd number of polariton condensates at the vertices of a regular polygon and we observe the formation of a stable discrete vortex state with a large topological charge as a consequence of antibonding frustration between nearest neighbouring condensates.

4.
Phys Rev Lett ; 126(5): 050504, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33605772

RESUMO

Gain-dissipative platforms consisting of lasers, optical parametric oscillators and nonequilibrium condensates operating at the condensation or coherence threshold have been recently proposed as efficient analog simulators of the two-local spin Hamiltonians with continuous or discrete degrees of freedom. We show that nonequilibrium condensates above the threshold arranged in an interacting network may realize k-local Hamiltonians with k>2 and lead to nontrivial phase configurations. Similarly, many gain-dissipative systems that can be manipulated by optical means can bring about the ground state of the k-local Hamiltonians and solve higher-order binary optimization problems. We show how to facilitate the search for the global solution by invoking complex couplings in the system and demonstrate the efficiency of the method on the sets of complex problems. This approach offers a highly flexible new kind of computation based on gain-dissipative simulators with complex coupling switching.

5.
Phys Rev Lett ; 121(23): 235302, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30576198

RESUMO

Classical spin models with discrete or continuous degrees of freedom arise in many studies of complex physical systems. A wide class of hard real-life optimization problems can be formulated as a minimization of a spin Hamiltonian. Here we show how to simulate the discrete Ising and n-state planar Potts models with or without external fields using the physical gain-dissipative platforms with continuous phases, such as lasers and various nonequilibrium Bose-Einstein condensates. The underlying operational principle originates from a combination of resonant and nonresonant pumping. Our results lay grounds for the physical simulations of a broad range of Hamiltonians with complex interactions that can vary in time and space and with combined symmetries.

6.
Sci Rep ; 8(1): 17791, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30542061

RESUMO

Recently, several platforms were proposed and demonstrated a proof-of-principle for finding the global minimum of the spin Hamiltonians such as the Ising and XY models using gain-dissipative quantum and classical systems. The implementation of dynamical adjustment of the gain and coupling strengths has been established as a vital feedback mechanism for analog Hamiltonian physical systems that aim to simulate spin Hamiltonians. Based on the principle of operation of such simulators we develop a novel class of gain-dissipative algorithms for global optimisation of NP-hard problems and show its performance in comparison with the classical global optimisation algorithms. These systems can be used to study the ground state and statistical properties of spin systems and as a direct benchmark for the performance testing of the gain-dissipative physical simulators. Our theoretical and numerical estimations suggest that for large problem sizes the analog simulator when built might outperform the classical computer computations by several orders of magnitude under certain assumptions about the simulator operation.

7.
Nat Mater ; 16(11): 1120-1126, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28967915

RESUMO

The vast majority of real-life optimization problems with a large number of degrees of freedom are intractable by classical computers, since their complexity grows exponentially fast with the number of variables. Many of these problems can be mapped into classical spin models, such as the Ising, the XY or the Heisenberg models, so that optimization problems are reduced to finding the global minimum of spin models. Here, we propose and investigate the potential of polariton graphs as an efficient analogue simulator for finding the global minimum of the XY model. By imprinting polariton condensate lattices of bespoke geometries we show that we can engineer various coupling strengths between the lattice sites and read out the result of the global minimization through the relative phases. Besides solving optimization problems, polariton graphs can simulate a large variety of systems undergoing the U(1) symmetry-breaking transition. We realize various magnetic phases, such as ferromagnetic, anti-ferromagnetic, and frustrated spin configurations on a linear chain, the unit cells of square and triangular lattices, a disordered graph, and demonstrate the potential for size scalability on an extended square lattice of 45 coherently coupled polariton condensates. Our results provide a route to study unconventional superfluids, spin liquids, Berezinskii-Kosterlitz-Thouless phase transition, and classical magnetism, among the many systems that are described by the XY Hamiltonian.

8.
Proc Natl Acad Sci U S A ; 111 Suppl 1: 4675-82, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24704874

RESUMO

The detailed understanding of the intricate dynamics of quantum fluids, in particular in the rapidly growing subfield of quantum turbulence which elucidates the evolution of a vortex tangle in a superfluid, requires an in-depth understanding of the role of finite temperature in such systems. The Landau two-fluid model is the most successful hydrodynamical theory of superfluid helium, but by the nature of the scale separations it cannot give an adequate description of the processes involving vortex dynamics and interactions. In our contribution we introduce a framework based on a nonlinear classical-field equation that is mathematically identical to the Landau model and provides a mechanism for severing and coalescence of vortex lines, so that the questions related to the behavior of quantized vortices can be addressed self-consistently. The correct equation of state as well as nonlocality of interactions that leads to the existence of the roton minimum can also be introduced in such description. We review and apply the ideas developed for finite-temperature description of weakly interacting Bose gases as possible extensions and numerical refinements of the proposed method. We apply this method to elucidate the behavior of the vortices during expansion and contraction following the change in applied pressure. We show that at low temperatures, during the contraction of the vortex core as the negative pressure grows back to positive values, the vortex line density grows through a mechanism of vortex multiplication. This mechanism is suppressed at high temperatures.

9.
Nature ; 457(7227): 273-4, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19148091
10.
Phys Rev Lett ; 100(25): 250401, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18643639

RESUMO

Injection and decay of particles in an inhomogeneous quantum condensate can significantly change its behavior. We model trapped, pumped, decaying condensates by a complex Gross-Pitaevskii equation and analyze the density and currents in the steady state. With homogeneous pumping, rotationally symmetric solutions are unstable. Stability may be restored by a finite pumping spot. However if the pumping spot is larger than the Thomas-Fermi cloud radius, then rotationally symmetric solutions are replaced by solutions with spontaneous arrays of vortices. These vortex arrays arise without any rotation of the trap, spontaneously breaking rotational symmetry.

11.
Phys Rev Lett ; 99(14): 145301, 2007 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-17930681

RESUMO

We consider the evolution and dissipation of vortex rings in a condensate at nonzero temperatures in the context of the classical field approximation, based on the defocusing nonlinear Schrödinger equation. The temperature in such a system is fully determined by the total number density and the number density of the condensate. The collisions with noncondensed particles reduce the radius of a vortex ring until it completely disappears. We obtain a universal decay law for a vortex line length and relate it to mutual friction coefficients in the fundamental equation of vortex motion in superfluids.

12.
Phys Rev Lett ; 94(12): 120401, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15903897

RESUMO

Axisymmetric three-dimensional solitary waves in uniform two-component mixture Bose-Einstein condensates are obtained as solutions of the coupled Gross-Pitaevskii equations with equal intracomponent but varying intercomponent interaction strengths. Several families of solitary wave complexes are found: (1) vortex rings of various radii in each of the components; (2) a vortex ring in one component coupled to a rarefaction solitary wave of the other component; (3) two coupled rarefaction waves; (4) either a vortex ring or a rarefaction pulse coupled to a localized disturbance of a very low momentum. The continuous families of such waves are shown in the momentum-energy plane for various values of the interaction strengths and the relative differences between the chemical potentials of two components. Solitary wave formation, their stability, and solitary wave complexes in two dimensions are discussed.

13.
Phys Rev Lett ; 94(1): 010403, 2005 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-15698052

RESUMO

Axisymmetric disturbances that preserve their form as they move along the vortex lines in uniform Bose-Einstein condensates are obtained numerically by the solution of the Gross-Pitaevskii equation. A continuous family of such solitary waves is shown in the momentum (p)-substitution energy (Epsilon) plane with p-->0.09 rho kappa(3)/c(2), Epsilon-->0.091 rho kappa(3)/c as U-->c, where rho is the density, c is the speed of sound, kappa is the quantum of circulation, and U is the solitary wave velocity. It is shown that collapse of a bubble captured by a vortex line leads to the generation of such solitary waves in condensates. The various stages of collapse are elucidated. In particular, it is shown that during collapse the vortex core becomes significantly compressed, and after collapse two solitary wave trains moving in opposite directions are formed on the vortex line.

14.
Phys Rev Lett ; 93(9): 090401, 2004 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-15447077

RESUMO

Nucleation of vortex rings accompanies the collapse of ultrasound bubbles in superfluids. Using the Gross-Pitaevskii equation for a uniform condensate we elucidate the various stages of the collapse of a stationary spherically symmetric bubble and establish conditions necessary for vortex nucleation. The minimum radius of the stationary bubble, whose collapse leads to vortex nucleation, was found to be 28+/-1 healing lengths. The time after which the nucleation becomes possible is determined as a function of the bubble's radius. We show that vortex nucleation takes place in moving bubbles of even smaller radius if the motion makes them sufficiently oblate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...