Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 16(12)2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30513601

RESUMO

Microalgae have been widely recognized as a valuable source of natural, bioactive molecules that can benefit human health. Some molecules of commercial value synthesized by the microalgal metabolism have been proven to display anti-inflammatory activity, including the carotenoids lutein and astaxanthin, the fatty acids EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid), and sulphated polysaccharides. These molecules can accumulate to a certain extent in a diversity of microalgae species. A production process could become commercially feasible if the productivity is high and the overall production process costs are minimized. The productivity of anti-inflammatory molecules depends on each algal species and the cultivation conditions, the latter being mostly related to nutrient starvation and/or extremes of temperature and/or light intensity. Furthermore, novel bioprocess tools have been reported which might improve the biosynthesis yields and productivity of those target molecules and reduce production costs simultaneously. Such novel tools include the use of chemical triggers or enhancers to improve algal growth and/or accumulation of bioactive molecules, the algal growth in foam and the surfactant-mediated extraction of valuable compounds. Taken together, the recent findings suggest that the combined use of novel bioprocess strategies could improve the technical efficiency and commercial feasibility of valuable microalgal bioproducts production, particularly anti-inflammatory compounds, in large scale processes.


Assuntos
Anti-Inflamatórios/metabolismo , Fatores Biológicos/metabolismo , Microalgas/metabolismo , Fotobiorreatores , Tensoativos/farmacologia , Anti-Inflamatórios/isolamento & purificação , Fatores Biológicos/isolamento & purificação , Humanos , Luz , Microalgas/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Temperatura
2.
J Biosci Bioeng ; 125(6): 669-675, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29370982

RESUMO

In this study, the effect of abiotic stress on the acidophilic eukaryotic microalga, Coccomyxa onubensis, was analyzed for the production of lutein and PUFAs (polyunsaturated fatty acids). It grows autotrophically at a pH of 2.5. It showed a growth rate of 0.30 d-1, and produced approximately 122.50 mg·L-1·d-1 biomass, containing lipids (300.39 mg g-1dw), lutein (5.30 mg g-1dw), and ß-carotene (1.20 mg g-1dw). The fatty acid methyl ester (FAME) fraction was 89.70 mg g-1dw with abundant palmitic acid (28.70%) and linoleic acid (37.80%). The addition of 100 mM NaCl improved the growth rate (0.54 d-1), biomass productivity (243.75 mg·L-1·d-1), and lipids accumulation (416.16 mg g-1dw). The microalga showed a lutein content of 6.70 mg g-1dw and FAME fraction of 118.90 mg g-1dw; 68% of the FAMEs were PUFAs. However, when 200-500 mM salt was added, its growth was inhibited but there was a significant induction of lutein (up to 7.80 mg g-1dw). Under continuous illumination with PAR (photosynthetically active radiations) +UVA (ultraviolet A, 8.7 W m-2), C. onubensis showed a growth rate of 0.40 d-1, and produced 226.3 mg·L-1·d-1 biomass, containing lipids, (487.26 mg g-1dw), lutein (7.07 mg g-1dw), and FAMEs (232.9 mg g-1dw); 48.4% of the FAME were PUFAs. The illumination with PAR + UVB (ultraviolet B, 0.16 W m-2) was toxic for cells. These results indicate that C. onubensis biomass is suitable as a supplement for functional foods and/or source of high added value products.


Assuntos
Clorófitas , Ácidos Graxos Insaturados/metabolismo , Luteína/metabolismo , Cloreto de Sódio/farmacologia , Estresse Fisiológico , Raios Ultravioleta , Aclimatação/efeitos dos fármacos , Aclimatação/efeitos da radiação , Ácidos/metabolismo , Biomassa , Clorófitas/efeitos dos fármacos , Clorófitas/crescimento & desenvolvimento , Clorófitas/metabolismo , Clorófitas/efeitos da radiação , Eucariotos/efeitos dos fármacos , Eucariotos/metabolismo , Eucariotos/efeitos da radiação , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos da radiação , Microalgas/efeitos dos fármacos , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Microalgas/efeitos da radiação , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/efeitos da radiação , Raios Ultravioleta/efeitos adversos , beta Caroteno/metabolismo
3.
Food Nutr Res ; 60: 30472, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27756449

RESUMO

BACKGROUND: Edible microalgae are marine or fresh water mesophilic species. Although the harvesting of microalgae offers an abundance of opportunities to the food and pharmaceutical industries, the possibility to use extremophilic microalgae as a food source for animals is not well-documented. OBJECTIVE: We studied the effects of dietary supplementation of a powdered form of the acidophilic microalga Coccomyxa onubensis on growth and health parameters of laboratory rats. METHOD: Four randomly organized groups of rats (n=6) were fed a standard diet (Diet 1, control) or with a diet in which 0.4% (Diet 2), 1.25% (Diet 3), or 6.25% (Diet 4) (w/w) of the standard diet weight was substituted with dried microalgae powder, respectively. The four groups of animals were provided ad libitum access to feed for 45 days. RESULTS: C. onubensis biomass is rich in protein (44.60% of dry weight) and dietary fiber (15.73%), and has a moderate carbohydrate content (24.8%) and a low lipid content (5.4%) in which polyunsaturated fatty acids represent 65% of the total fatty acid. Nucleic acids are present at 4.8%. No significant difference was found in growth rates or feed efficiency ratios of the four groups of rats. Histological studies of liver and kidney tissue revealed healthy organs in control and C. onubensis-fed animals, while plasma hematological and biochemical parameters were within healthy ranges for all animals. Furthermore, animals fed a microalgae-enriched diet exhibited a statistically significant decrease in both blood cholesterol and triglyceride levels. The blood triglyceride content and very low density lipoprotein-cholesterol levels decreased by about 50% in rats fed Diet 4. CONCLUSIONS: These data suggest that C. onubensis may be useful as a food supplement for laboratory animals and may also serve as a nutraceutical in functional foods. In addition, microalgae powder-supplemented diets exerted a significant hypocholesterolemic and hypotriglyceridemic effect in animals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...