Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Pharmaceutics ; 16(5)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38794238

RESUMO

Itraconazole is a drug used in veterinary medicine for the treatment of different varieties of dermatophytosis at doses between 3-5 mg/kg/day in cats. Nevertheless, in Spain, it is only available in the market as a 52 mL suspension at 10 mg/mL. The lack of alternative formulations, which provide sufficient formulation to cover the treatment of large animals or allow the treatment of a group of them, can be overcome with compounding. For this purpose, it has to be considered that itraconazole is a weak base, class II compound, according to the Biopharmaceutics Classification System, that can precipitate when reaching the duodenum. The aim of this work is to develop alternative oral formulations of itraconazole for the treatment of dermatophytosis. Several oral compounds of itraconazole were prepared and compared, in terms of dissolution rate, permeability, and stability, in order to provide alternatives to the medicine commercialized. The most promising formulation contained hydroxypropyl methylcellulose and ß-cyclodextrin. This combination of excipients was capable of dissolving the same concentration as the reference product and delaying the precipitation of itraconazole upon leaving the stomach. Moreover, the intestinal permeability of itraconazole was increased more than two-fold.

2.
Pharmaceutics ; 16(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38543284

RESUMO

The purpose of this study was to predict the in vivo bioequivalence (BE) outcome of valsartan (VALS, BCS class IV) from three oral-fixed combination products with hydrochlorothiazide (HCTZ, BCS class III) (Co-Diovan® Forte as reference and two generic formulations in development) by conducting in vivo predictive dissolution with a gastrointestinal simulator (GIS) and a physiologically based biopharmaceutic model (PBBM). In the first BE study, the HCTZ failed, but the VALS 90% CI of Cmax and the AUC were within the acceptance limits, while, in the second BE study, the HCTZ 90% CI of Cmax and the AUC were within the acceptance limits, but the VALS failed. As both drugs belong to different BCS classes, their limiting factors for absorption are different. On the other hand, the gastrointestinal variables affected by the formulation excipients have a distinct impact on their in vivo exposures. Dissolution tests of the three products were performed in a GIS, and a PBBM was constructed for VALS by incorporating in the mathematical model of the in vitro-in vivo correlation (IVIVC) the gastrointestinal variables affected by the excipients, namely, VALS permeability and GI transit time. VALS permeability in presence of the formulation excipients was characterized using the in situ perfusion method in rats, and the impact of the excipients on the GI transit times was estimated from the HCTZ's in vivo results. The model was able to fit the in vivo BE results with a good prediction error. This study contributes to the field by showing the usefulness of PBBM in establishing in vitro-in vivo relationships incorporating not only dissolution data but also other gastrointestinal critical variables that affect drug exposure in BCS class IV compounds.

3.
Nanomedicine (Lond) ; 18(25): 1799-1813, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37990994

RESUMO

Background: Glioblastoma is the most common and lethal brain cancer. New treatments are needed. However, the presence of the blood-brain barrier is limiting the development of new treatments directed toward the brain, as it restricts the access and distribution of drugs to the CNS. Materials & methods: In this work, two different nanoparticles (i.e., mesoporous silica nanoparticles and magnetic mesoporous silica nanoparticles) loaded with ponatinib were prepared. Results & conclusion: Both particles were characterized and tested in vitro and in vivo, proving that they are not toxic for blood-brain barrier cells and they increase the amount of drug reaching the brain when administered intranasally in comparison with the results obtained for the free drug.


This article presents a couple of promising nanoparticles for the treatment of brain cancer. This research is interesting because the brain and spinal cord are protected by a membrane that prevents toxic substances from reaching them but also hinders the access of drugs. One type of particle has a magnet in its core, so it can be driven with another external magnet until it reaches target; the other type does not have a magnet but has a small size, which would allow it to cross the membrane mentioned above. These particles have been proven to be able to kill cancer cells and to reach the brain after been administered through the nose in a better way than the free drug.


Assuntos
Portadores de Fármacos , Nanopartículas , Administração Intranasal , Encéfalo , Dióxido de Silício , Sistemas de Liberação de Medicamentos/métodos , Porosidade
5.
Pharmaceutics ; 15(5)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37242673

RESUMO

Currently, the mechanisms involved in drug access to the central nervous system (CNS) are not completely elucidated, and research efforts to understand the behaviour of the therapeutic agents to access the blood-brain barrier continue with the utmost importance. The aim of this work was the creation and validation of a new in vitro model capable of predicting the in vivo permeability across the blood-brain barrier in the presence of glioblastoma. The selected in vitro method was a cell co-culture model of epithelial cell lines (MDCK and MDCK-MDR1) with a glioblastoma cell line (U87-MG). Several drugs were tested (letrozole, gemcitabine, methotrexate and ganciclovir). Comparison of the proposed in vitro model, MDCK and MDCK-MDR1 co-cultured with U87-MG, and in vivo studies showed a great predictability for each cell line, with R2 values of 0.8917 and 0.8296, respectively. Therefore, both cells lines (MDCK and MDCK-MDR1) are valid for predicting the access of drugs to the CNS in the presence of glioblastoma.

6.
AAPS J ; 25(3): 45, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085637

RESUMO

Assessing in vivo performance to inform formulation selection and development decisions is an important aspect of drug development. Biopredictive dissolution methodologies for oral dosage forms have been developed to understand in vivo performance, assist in formulation development/optimization, and forecast the outcome of bioequivalence studies by combining them with simulation tools to predict plasma profiles in humans. However, unlike compendial dissolution methodologies, the various biopredictive methodologies have not yet been harmonized or standardized. This manuscript presents the initial phases of an effort to develop best practices and move toward standardization of the biopredictive methodologies through the Product Quality Research Institute (PQRI, https://pqri.org ) entitled "The standardization of in vitro predictive dissolution methodologies and in silico bioequivalence study Working Group." This Working Group (WG) is comprised of participants from 10 pharmaceutical companies and academic institutes. The project will be accomplished in a total of five phases including assessing the performance of dissolution protocols designed by the individual WG members, and then building "best practice" protocols based on the initial dissolution profiles. After refining the "best practice" protocols to produce equivalent dissolution profiles, those will be combined with physiologically based biopharmaceutics models (PBBM) to predict plasma profiles. In this manuscript, the first two of the five phases are reported, namely generating biopredictive dissolution profiles for ibuprofen and dipyridamole and using those dissolution profiles with PBBM to match the clinical plasma profiles. Key experimental parameters are identified, and this knowledge will be applied to build the "best practice" protocol in the next phase.


Assuntos
Dipiridamol , Ibuprofeno , Humanos , Solubilidade , Comprimidos , Academias e Institutos , Modelos Biológicos , Administração Oral
7.
Int J Pharm ; 636: 122759, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36801479

RESUMO

The blood-brain barrier (BBB) limits the access of substances to the central nervous system (CNS) which hinders the treatment of pathologies affecting the brain and the spinal cord. Nowadays, research is focus on new strategies to overcome the BBB and can treat the pathologies affecting the CNS are needed. In this review, the different strategies that allow and increase the access of substances to the CNS are analysed and extended commented, not only invasive strategies but also non-invasive ones. The invasive techniques include the direct injection into the brain parenchyma or the CSF and the therapeutic opening of the BBB, while the non-invasive techniques include the use of alternative routes of administration (nose-to-brain route), the inhibition of efflux transporters (as it is important to prevent the drug efflux from the brain and enhance the therapeutic efficiency), the chemical modification of the molecules (prodrugs and chemical drug delivery systems (CDDS)) and the use of nanocarriers. In the future, knowledge about nanocarriers to treat CNS diseases will continue to increase, but the use of other strategies such as drug repurposing or drug reprofiling, which are cheaper and less time consuming, may limit its transfer to society. The main conclusion is that the combination of different strategies may be the most interesting approach to increase the access of substances to the CNS.


Assuntos
Barreira Hematoencefálica , Doenças do Sistema Nervoso Central , Humanos , Sistema Nervoso Central , Encéfalo , Sistemas de Liberação de Medicamentos/métodos , Doenças do Sistema Nervoso Central/tratamento farmacológico
8.
Pharmaceutics ; 14(12)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36559059

RESUMO

Some years ago, excipients were considered inert substances irrelevant in the absorption process. However, years of study have demonstrated that this belief is not always true. In this study, the reasons for a bioequivalence failure between two formulations of silodosin are investigated. Silodosin is a class III drug according to the Biopharmaceutics Classification System, which has been experimentally proven by means of solubility and permeability experiments. Dissolution tests have been performed to identify conditions concordant with the non-bioequivalent result obtained from the human bioequivalence study and it has been observed that paddles at 50 rpm are able to detect inconsistent differences between formulations at pH 4.5 and pH 6.8 (which baskets at 100 rpm are not able to do), whereas the GIS detects differences at the acidic pH of the stomach. It has also been observed that the differences in excipients between products did not affect the disintegration process, but disintegrants did alter the permeability of silodosin through the gastrointestinal barrier. Crospovidone and povidone, both derivatives of PVP, are used as disintegrants in the test product, instead of the pregelatinized corn starch used in the reference product. Permeability experiments show that PVP increases the absorption of silodosin-an increase that would explain the greater Cmax observed for the test product in the bioequivalence study.

9.
Mol Pharm ; 19(3): 749-762, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35188394

RESUMO

Considering the broad applications and popularity, the in situ perfusion technique is an established and interesting approach to evaluate the absorption mechanisms of drug molecules in specific regions of the intestinal tract. Compared to perfusion studies in humans, this surrogate model shows several familiar characteristics making it interesting to apply this technique in rats in the non-clinical stage of drug product development. The differences in gastrointestinal (GI) anatomy and physiology between rats and humans are thoroughly discussed in the present review. Moreover, an in-depth overview of the Doluisio (i.e., closed-loop) versus the single-pass intestinal perfusion (i.e., open-loop) technique is shown. Finally, applications and future perspectives of the technique are presented.


Assuntos
Absorção Intestinal , Animais , Absorção Intestinal/fisiologia , Perfusão/métodos , Permeabilidade , Ratos
10.
AAPS J ; 24(1): 17, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34982285

RESUMO

The present work aimed to differentiate between in vitro dissolution profiles of ibuprofen as input for GastroPlus™ and to see the impact on systemic exposure. In vitro dissolution profiles of ibuprofen obtained under low- and high-buffered dissolution media were used as input using the z-factor approach. In a second step, a customized surface pH calculator was applied to predict the surface pH of ibuprofen under these low- and high-buffered dissolution conditions. These surface pH values were adopted in GastroPlus™ and simulations were performed to predict the systemic outcome. Simulated data were compared with systemic data of ibuprofen obtained under fasted state conditions in healthy subjects. The slower dissolution rate observed when working under low-buffered conditions nicely matched with the slower dissolution rate as observed during the clinical aspiration study and was in line with the systemic exposure of the drug. Finally, a population simulation was performed to explore the impact of z-factor towards bioequivalence (BE) criteria (so-called safe space). Concerning future perspectives, the customized calculator should be developed in such a way to make it possible to predict the dissolution rate (being informed by the particle size distribution) which, in its turn, can be used as a surrogate to predict the USP2 dissolution curve. Subsequently, validation can be done by using this profile as input for PBPK platforms.


Assuntos
Química Farmacêutica/métodos , Ibuprofeno/química , Modelos Biológicos , Administração Oral , Simulação por Computador , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Ibuprofeno/administração & dosagem , Ibuprofeno/farmacocinética , Solubilidade , Equivalência Terapêutica
11.
Nanomaterials (Basel) ; 12(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35055267

RESUMO

Imatinib (IMT) is a tyrosine kinase enzyme inhibitor and extensively used for the treatment of gastrointestinal stromal tumors (GISTs). A nanostructured lipid carrier system (NLCS) containing IMT was developed by using emulsification-sonication methods. The characterization of the developed formulation was performed in terms of its particle size, polydispersity index (PDI), zeta potential, entrapment efficiency, loading capacity, sterility, syringeability, stability, in vitro release kinetics with mathematical models, cellular uptake studies with flow cytometry, fluorescence microscopy and cytotoxicity for CRL-1739 cells. The particle size, PDI, loading capacity and zeta potential of selected NLCS (F16-IMT) were found to be 96.63 ± 1.87 nm, 0.27 ± 0.15, 96.49 ± 1.46% and -32.7 ± 2.48 mV, respectively. F16-IMT was found to be stable, thermodynamic, sterile and syringeable through an 18 gauze needle. The formulation revealed a Korsmeyer-Peppas drug release model of 53% at 8 h, above 90% of cell viability, 23.61 µM of IC50 and induction of apoptosis in CRL-1739 cell lines. In the future, F16-IMT can be employed to treat GISTs. A small amount of IMT loaded into the NLCSs will be better than IMT alone for therapy for GISTs. Consequently, F16-IMT could prove to be useful for effective GIST treatment.

12.
Pharmaceutics ; 14(1)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35057075

RESUMO

The main aim of this work is the biopharmaceutical characterization of a new hybrid benzodiazepine-dihydropyridine derivative, JM-20, derived with potent anti-ischemic and neuroprotective effects. In this study, the pKa and the pH-solubility profile were experimentally determined. Additionally, effective intestinal permeability was measured using three in vitro epithelial cell lines (MDCK, MDCK-MDR1 and Caco-2) and an in situ closed-loop intestinal perfusion technique. The results indicate that JM-20 is more soluble at acidic pH (9.18 ± 0.16); however, the Dose number (Do) was greater than 1, suggesting that it is a low-solubility compound. The permeability values obtained with in vitro cell lines as well as with the in situ perfusion method show that JM-20 is a highly permeable compound (Caco-2 value 3.8 × 10-5). The presence of an absorption carrier-mediated transport mechanism was also demonstrated, as well as the efflux effect of P-glycoprotein on the permeability values. Finally, JM-20 was provisionally classified as class 2 according to the biopharmaceutical classification system (BCS) due to its high intestinal permeability and low solubility. The potential good oral absorption of this compound could be limited by its solubility.

13.
Animals (Basel) ; 11(12)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34944295

RESUMO

The development of new drugs or formulations for central nervous system (CNS) diseases is a complex pharmacologic and pharmacokinetic process; it is important to evaluate their access to the CNS through the blood-brain barrier (BBB) and their distribution once they have acceded to the brain. The gold standard tool for obtaining this information is the animal microdialysis technique; however, according to 3Rs principles, it would be better to have an "animal-free" alternative technique. Because of that, the purpose of this work was to develop a new formulation to substitute the brain homogenate in the in vitro tests used for the prediction of a drug's distribution in the brain. Fresh eggs have been used to prepare an emulsion with the same proportion in proteins and lipids as a human brain; this emulsion has proved to be able to predict both the unbound fraction of drug in the brain (fu,brain) and the apparent volume of distribution in the brain (Vu,brain) when tested in in vitro permeability tests. The new formulation could be used as a screening tool; only the drugs with a proper in vitro distribution would pass to microdialysis studies, contributing to the refinement, reduction and replacement of animals in research.

14.
Pharmaceutics ; 13(9)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34575476

RESUMO

One of the main obstacles in neurological disease treatment is the presence of the blood-brain barrier. New predictive high-throughput screening tools are essential to avoid costly failures in the advanced phases of development and to contribute to the 3 Rs policy. The objective of this work was to jointly develop a new in vitro system coupled with a physiological-based pharmacokinetic (PBPK) model able to predict brain concentration levels of different drugs in rats. Data from in vitro tests with three different cells lines (MDCK, MDCK-MDR1 and hCMEC/D3) were used together with PK parameters and three scaling factors for adjusting the model predictions to the brain and plasma profiles of six model drugs. Later, preliminary quantitative structure-property relationships (QSPRs) were constructed between the scaling factors and the lipophilicity of drugs. The predictability of the model was evaluated by internal validation. It was concluded that the PBPK model, incorporating the barrier resistance to transport, the disposition within the brain and the drug-brain binding combined with MDCK data, provided the best predictions for passive diffusion and carrier-mediated transported drugs, while in the other cell lines, active transport influence can bias predictions.

15.
Pharmaceutics ; 13(5)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064700

RESUMO

Montelukast is a weak acid drug characterized by its low solubility in the range of pH 1.2 to 4.5, which may lead to dissolution-limited absorption. The aim of this paper is to develop an in vivo predictive dissolution method for montelukast and to check its performance by establishing a level-A in vitro-in vivo correlation (IVIVC). During the development of a generic film-coated tablet formulation, two clinical trials were done with three different experimental formulations to achieve a similar formulation to the reference one. A dissolution test procedure with a flow-through cell (USP IV) was used to predict the in vivo absorption behavior. The method proposed is based on a flow rate of 5 mL/min and changes of pH mediums from 1.2 to 4.5 and then to 6.8 with standard pharmacopoeia buffers. In order to improve the dissolution of montelukast, sodium dodecyl sulfate was added to the 4.5 and 6.8 pH mediums. Dissolution profiles in from the new method were used to develop a level-A IVIVC. One-step level-A IVIVC was developed from dissolution profiles and fractions absorbed obtained by the Loo-Riegelman method. Time scaling with Levy's plot was necessary to achieve a linear IVIVC. One-step differential equation-based IVIVC was also developed with a time-scaling function. The developed method showed similar results to a previously proposed biopredictive method for montelukast, and the added value showed the ability to discriminate among different release rates in vitro, matching the in vivo clinical bioequivalence results.

16.
Eur J Pharm Biopharm ; 165: 1-12, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33971275

RESUMO

In vitro dissolution tests are widely used to monitor the quality and consistency of oral solid dosage forms, but to increase the physiological relevance of in vitro dissolution tests, newer systems combine dissolution and permeation measurements. Some of these use artificial membranes while others (e.g., in the in vitro dissolution absorption system 2; IDAS2), utilize cell monolayers to assess drug permeation. We determined the effect of the precipitation inhibitor Hypromellose Acetate Succinate (HPMCAS) on the supersaturation/permeation of Ketoconazole and Dipyridamole in IDAS2 and its effect on their absorption in rats. Thus the main objectives of this study were to determine: (1) whether dissolution and permeation data from IDAS2 could be used to predict rat plasma concentration using an absorption model and (2) whether the effect of the precipitation inhibitor HPMCAS on supersaturation and permeation in IDAS2 was correlated with its effect on systemic absorption in the rat. Predicted drug concentrations in rat plasma, generated using parameters estimated from IDAS2 dissolution/permeation data and a mathematical absorption model, showed good agreement with measured concentrations. While in IDAS2, the prolongation of Ketoconazole's supersaturation caused by HPMCAS led to higher permeation, which paralleled the higher systemic absorption in rats, Dipyridamole showed no supersaturation and, thus, no effect of HPMCAS in dissolution or permeation in IDAS2 and no effect on Dipyridamole absorption in rats. The ability of IDAS2 to detect supersaturation following a pH-shift supports the potential value of this system for studying approaches to enhance intestinal absorption through supersaturation and the accuracy of plasma concentration predictions in rats suggest the possibility of combining IDAS2 with absorption models to predict plasma concentration in different species.


Assuntos
Absorção Fisiológica , Liberação Controlada de Fármacos , Modelos Biológicos , Administração Oral , Animais , Células CACO-2 , Dipiridamol/administração & dosagem , Dipiridamol/farmacocinética , Humanos , Cetoconazol/administração & dosagem , Cetoconazol/farmacocinética , Masculino , Modelos Animais , Ratos , Solubilidade
17.
Pharmaceutics ; 13(4)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917118

RESUMO

The purpose of this study was to predict in vivo performance of three oral products of Etoricoxib (Arcoxia® as reference and two generic formulations in development) by conducting in vivo predictive dissolution with GIS (Gastro Intestinal Simulator) and computational analysis. Those predictions were compared with the results from previous bioequivalence (BE) human studies. Product dissolution studies were performed using a computer-controlled multicompartmental dissolution device (GIS) equipped with three dissolution chambers, representing stomach, duodenum, and jejunum, with integrated transit times and secretion rates. The measured dissolved amounts were modelled in each compartment with a set of differential equations representing transit, dissolution, and precipitation processes. The observed drug concentration by in vitro dissolution studies were directly convoluted with permeability and disposition parameters from literature to generate the predicted plasma concentrations. The GIS was able to detect the dissolution differences among reference and generic formulations in the gastric chamber where the drug solubility is high (pH 2) while the USP 2 standard dissolution test at pH 2 did not show any difference. Therefore, the current study confirms the importance of multicompartmental dissolution testing for weak bases as observed for other case examples but also the impact of excipients on duodenal and jejunal in vivo behavior.

18.
Daru ; 29(1): 195-203, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33884588

RESUMO

BACKGROUND: Lychnophora trichocarpha (Spreng.) Spreng. ex Sch.Bip has been used in folk medicine to treat pain, inflammation, rheumatism and bruises. Eremantholide C, a sesquiterpene lactone, is one of the substances responsible for the anti-inflammatory and anti-hyperuricemic effects of L. trichocarpha. OBJECTIVES: Considering the potential to become a drug for the treatment of inflammation and gouty arthritis, this study evaluated the permeability of eremantholide C using in situ intestinal perfusion in rats. From the permeability data, it was possible to predict the fraction absorbed of eremantholide C in humans and elucidate its oral absorption process. METHODS: In situ intestinal perfusion studies were performed in the complete small intestine of rats using different concentrations of eremantholide C: 960 µg/ml, 96 µg/ml and 9.6 µg/ml (with and without sodium azide), in order to verify the lack of dependence on the measured permeability as a function of the substance concentration in the perfusion solutions. RESULTS: Eremantholide C showed Peff values, in rats, greater than 5 × 10-5 cm/s and fraction absorbed predicted for humans greater than 85%. These results indicated the high permeability for eremantholide C. Moreover, its permeation process occurs only by passive route, because there were no statistically significant differences between the Peff values for eremantholide C. CONCLUSION: The high permeability, in addition to the low solubility, indicated that eremantholide C is a biologically active substance BCS class II. The pharmacological activities, low toxicity and biopharmaceutics parameters demonstrate that eremantholide C has the necessary requirements for the development of a drug product, to be administered orally, with action on inflammation, hyperuricemia and gout.


Assuntos
Asteraceae , Sesquiterpenos/metabolismo , Animais , Biofarmácia , Humanos , Absorção Intestinal , Mucosa Intestinal/metabolismo , Secreções Intestinais/química , Masculino , Permeabilidade , Componentes Aéreos da Planta , Ratos Wistar , Sesquiterpenos/química , Sesquiterpenos/classificação
19.
Eur J Pharm Biopharm ; 163: 120-126, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33838261

RESUMO

The BBB is a protective entity that prevents external substances from reaching the CNS but it also hinders the delivery of drugs into the brain when they are needed. The main objective of this work was to improve a previously proposed in vitro cell-based model by using a more physiological cell line (hCMEC/D3) to predict the main pharmacokinetic parameters that describe the access and distribution of drugs in the CNS: Kpuu,brain, fu,plasma, fu,brain and Vu,brain. The hCMEC/D3 permeability of seven drugs was studied in transwell systems under different conditions (standard, modified with albumin and modified with brain homogenate). From the permeability coefficients of those experiments, the parameters mentioned above were calculated and four linear IVIVCs were established. The best ones were those that relate the in vitro and in vivo Vu,brain and fu,brain (r2 = 0.961 and r2 = 0.940) which represent the binding rate of a substance to the brain tissue, evidencing the importance of using brain homogenate to mimic brain tissue when an in vitro brain permeability assay is done. This methodology could be a high-throughput screening tool in drug development to select the CNS promising drugs in three different in vitro BBB models (hCMEC/D3, MDCK and MDCK-MDR1).


Assuntos
Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Animais , Linhagem Celular , Cães , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Células Madin Darby de Rim Canino , Permeabilidade , Distribuição Tecidual
20.
Pharmaceutics ; 13(1)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33451061

RESUMO

Giardiasis is a parasitism produced by the protozoa Giardia intestinalis that lives as trophozoite in the small intestine (mainly in the duodenum) attached to the intestinal villus by means of billed discs. The first line treatment is metronidazole, a drug with high bioavailability, which is why to obtain therapeutic concentrations in duodenum, it is necessary to administer high doses of drug to patients with the consequent occurrence of side effects. It is necessary to developed new therapeutical approaches to achieve a local delivery of the drug. In this sense, we have developed gated mesoporous silica microparticles loaded with metronidazole and with a molecular gate pH dependent. In vitro assays demonstrated that the metronidazole release is practically insignificant at acidic pHs, but in duodenum conditions, the metronidazole delivery from the microparticles is effective enough to produce an important parasite destruction. In vivo assays indicate that this microparticulate system allows to increase the concentration of the drug in duodenum and reduce the concentration in plasma avoiding systemic effects. This system could be useful for other intestinal local treatments in order to reduce doses and increase drug availability in target tissues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...