Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Theor Biol ; 542: 111109, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35346665

RESUMO

Contact tracing, case isolation, quarantine, social distancing, and other non-pharmaceutical interventions (NPIs) have been a cornerstone in managing the COVID-19 pandemic. However, their effects on disease dynamics are not fully understood. Saturation of contact tracing caused by the increase of infected individuals has been recognized as a crucial variable by healthcare systems worldwide. Here, we model this saturation process with a mechanistic and a phenomenological model and show that it induces an Allee effect which could determine an infection threshold between two alternative states-containment and outbreak. This transition was considered elsewhere as a response to the strength of NPIs, but here we show that they may be also determined by the number of infected individuals. As a consequence, timing of NPIs implementation and relaxation after containment is critical to their effectiveness. Containment strategies such as vaccination or mobility restriction may interact with contact tracing-induced Allee effect. Each strategy in isolation tends to show diminishing returns, with a less than proportional effect of the intervention on disease containment. However, when combined, their suppressing potential is enhanced. Relaxation of NPIs after disease containment--e.g. because vaccination--have to be performed in attention to avoid crossing the infection threshold required to a novel outbreak. The recognition of a contact tracing-induced Allee effect, its interaction with other NPIs and vaccination, and the existence of tipping points contributes to the understanding of several features of disease dynamics and its response to containment interventions. This knowledge may be of relevance for explaining the dynamics of diseases in different regions and, more importantly, as input for guiding the use of NPIs, vaccination campaigns, and its combination for the management of epidemic outbreaks.


Assuntos
COVID-19 , Busca de Comunicante , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , Pandemias/prevenção & controle , Quarentena , SARS-CoV-2
2.
Wirel Pers Commun ; 120(2): 1791-1819, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33903784

RESUMO

This paper analyzes a large-scale dataset of real-world Wi-Fi operating networks, collected from more than 9,000 access points (APs) for 1 year. The APs are distributed among more than 1,200 educational centers in the context of a nation-wide one-to-one computing program, being most of them primary and secondary schools. The data corresponds to RSSI measurements between APs used to build the conflict graphs for each school Wi-Fi network. We propose a simple embedding for the Wi-Fi network conflict graphs based on classical graph features, which proves to be useful to analyze the behavior of the wireless networks, showing a high discrimination power among the different school networks. Moreover, we discuss some practical applications of the embedding. In particular, it enables to study the Wi-Fi network dynamics at each school, analyzing the conflict graphs temporal variations through clustering techniques. The presented methodology allows us to successfully separate the most stable scenarios from those with more significant variability, which therefore require more technical resources to optimize the network. Besides, we also compared the behaviour of the Wi-Fi networks of the different schools, which enable us to reuse the optimal configuration found for one school in all those sites that have similar conflict graph patterns.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...