Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photosynth Res ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037691

RESUMO

Mg2+, the most abundant divalent cation in living cells, plays a pivotal role in numerous enzymatic reactions and is of particular importance for organisms performing oxygenic photosynthesis. Its significance extends beyond serving as the central ion of the chlorophyll molecule, as it also acts as a counterion during the light reaction to balance the proton gradient across the thylakoid membranes. In this study, we investigated the effects of Mg2+ limitation on the physiology of the well-known model microorganism Synechocystis sp. PCC6803. Our findings reveal that Mg2+ deficiency triggers both morphological and functional changes. As seen in other oxygenic photosynthetic organisms, Mg2+ deficiency led to a decrease in cellular chlorophyll concentration. Moreover, the PSI-to-PSII ratio decreased, impacting the photosynthetic efficiency of the cell. In line with this, Mg2+ deficiency led to a change in the proton gradient built up across the thylakoid membrane upon illumination.

2.
Plant Cell Physiol ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38907526

RESUMO

Cyanobacteria play a key role in primary production in both oceans and fresh waters and hold great potential for sustainable production of a large number of commodities. During their life, cyanobacteria cells need to acclimate to a multitude of challenges, including shifts in intensity and quality of incident light. Despite our increasing understanding of metabolic regulation under various light regimes, detailed insight into fitness advantages and limitations under shifting light quality remains underexplored. Here, we study photo-physiological acclimation in the cyanobacterium Synechocystis sp. PCC 6803 throughout the photosynthetically active radiation (PAR) range. Using light emitting diodes (LEDs) with qualitatively different narrow spectra, we describe wavelength dependence of light capture, electron transport and energy transduction to main cellular pools. In addition, we describe processes that fine-tune light capture, such as state transitions, or the efficiency of energy transfer from phycobilisomes to photosystems (PS). We show that growth was the most limited under blue light due to inefficient light harvesting, and that many cellular processes are tightly linked to the redox state of the plastoquinone (PQ) pool, which was the most reduced under red light. The PSI-to-PSII ratio was low under blue photons, however, it was not the main growth-limiting factor, since it was even more reduced under violet and near far-red lights, where Synechocystis grew faster compared to blue light. Our results provide insight into the spectral dependence of phototrophic growth and can provide the foundation for future studies of molecular mechanisms underlying light acclimation in cyanobacteria, leading to light optimization in controlled cultivations.

3.
Environ Res ; 238(Pt 2): 117283, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37783333

RESUMO

Climate change threatens surface waters worldwide, especially shallow lakes where one of the expected consequences is a sharp increase in their water temperatures. Phytobenthos is an essential, but still less studied component of aquatic ecosystems, and it would be important to learn more about how global warming will affect this community in shallow lakes. In this research, the effects of different climate change scenarios (SSP2-4.5 and SSP5-8.5, as intermediate and high emission scenarios) on the structure and function of the entire phytobenthos community using species- and trait-based approaches were experimentally investigated in an outdoor mesocosm system. Our results show that the forecasted 3 °C increase in temperature will already exert significant impacts on the benthic algal community by (1) altering its species and (2) trait composition (smaller cell size, lower abundance of colonial and higher of filamentous forms); (3) decreasing Shannon diversity; and (4) enhancing the variability of the community. Higher increase in the temperature (+5 °C) will imply more drastic alterations in freshwater phytobenthos by (1) inducing very high variability in species composition and compositional changes even in phylum level (towards higher abundance of Cyanobacteria and Chlorophyta at the expense of Bacillariophyta); (2) continuing shift in trait composition (benefits for smaller cell volume, filamentous life-forms, non-motile and weakly attached taxa); (3) further reducing the functional diversity; (4) increasing biofilm thickness (1.4 µm/°C) and (5) decreasing maximum quantum yield of photosystem II. In conclusion, already the intermediate emission scenario will predictably induce high risk in biodiversity issues, the high emission scenario will imply drastic impacts on the benthic algae endangering even the function of the ecosystem.


Assuntos
Mudança Climática , Lagos , Ecossistema , Aquecimento Global , Biodiversidade
4.
Comput Struct Biotechnol J ; 21: 58-65, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36514336

RESUMO

Crocosphaera and Cyanothece are both unicellular, nitrogen-fixing cyanobacteria that prefer different environments. Whereas Crocosphaera mainly lives in nutrient-deplete, open oceans, Cyanothece is more common in coastal, nutrient-rich regions. Despite their physiological similarities, the factors separating their niches remain elusive. Here we performed physiological experiments on clone cultures and expand upon a simple ecological model to show that their different niches can be sufficiently explained by the observed differences in their photosynthetic capacities and rates of carbon (C) consumption. Our experiments revealed that Cyanothece has overall higher photosynthesis and respiration rates than Crocosphaera. A simple growth model of these microorganisms suggests that C storage and consumption are previously under-appreciated factors when evaluating the occupation of niches by different marine nitrogen fixers.

6.
Comput Struct Biotechnol J ; 19: 6456-6464, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938417

RESUMO

The photoautotrophic, unicellular N2-fixer, Cyanothece, is a model organism that has been widely used to study photosynthesis regulation, the structure of photosystems, and the temporal segregation of carbon (C) and nitrogen (N) fixation in light and dark phases of the diel cycle. Here, we present a simple quantitative model and experimental data that together, suggest external dissolved inorganic carbon (DIC) concentration as a major limiting factor for Cyanothece growth, due to its high C-storage requirement. Using experimental data from a parallel laboratory study as a basis, we show that after the onset of the light period, DIC was rapidly consumed by photosynthesis, leading to a sharp drop in the rate of photosynthesis and C accumulation. In N2-fixing cultures, high rates of photosynthesis in the morning enabled rapid conversion of DIC to intracellular C storage, hastening DIC consumption to levels that limited further uptake. The N2-fixing condition allows only a small fraction of fixed C for cellular growth since a large fraction was reserved in storage to fuel night-time N2 fixation. Our model provides a framework for resolving DIC limitation in aquatic ecosystem simulations, where DIC as a growth-limiting factor has rarely been considered, and importantly emphasizes the effect of intracellular C allocation on growth rate that varies depending on the growth environment.

7.
Front Plant Sci ; 12: 612302, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815434

RESUMO

Photomorphogenesis is a process by which photosynthetic organisms perceive external light parameters, including light quality (color), and adjust cellular metabolism, growth rates and other parameters, in order to survive in a changing light environment. In this study we comprehensively explored the light color acclimation of Cyanobium gracile, a common cyanobacterium in turbid freshwater shallow lakes, using nine different monochromatic growth lights covering the whole visible spectrum from 435 to 687 nm. According to incident light wavelength, C. gracile cells performed great plasticity in terms of pigment composition, antenna size, and photosystem stoichiometry, to optimize their photosynthetic performance and to redox poise their intersystem electron transport chain. In spite of such compensatory strategies, C. gracile, like other cyanobacteria, uses blue and near far-red light less efficiently than orange or red light, which involves moderate growth rates, reduced cell volumes and lower electron transport rates. Unfavorable light conditions, where neither chlorophyll nor phycobilisomes absorb light sufficiently, are compensated by an enhanced antenna size. Increasing the wavelength of the growth light is accompanied by increasing photosystem II to photosystem I ratios, which involve better light utilization in the red spectral region. This is surprisingly accompanied by a partial excitonic antenna decoupling, which was the highest in the cells grown under 687 nm light. So far, a similar phenomenon is known to be induced only by strong light; here we demonstrate that under certain physiological conditions such decoupling is also possible to be induced by weak light. This suggests that suboptimal photosynthetic performance of the near far-red light grown C. gracile cells is due to a solid redox- and/or signal-imbalance, which leads to the activation of this short-term light acclimation process. Using a variety of photo-biophysical methods, we also demonstrate that under blue wavelengths, excessive light is quenched through orange carotenoid protein mediated non-photochemical quenching, whereas under orange/red wavelengths state transitions are involved in photoprotection.

8.
Front Microbiol ; 12: 617802, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897635

RESUMO

Marine diazotrophs are a diverse group with key roles in biogeochemical fluxes linked to primary productivity. The unicellular, diazotrophic cyanobacterium Cyanothece is widely found in coastal, subtropical oceans. We analyze the consequences of diazotrophy on growth efficiency, compared to NO3 --supported growth in Cyanothece, to understand how cells cope with N2-fixation when they also have to face carbon limitation, which may transiently affect populations in coastal environments or during blooms of phytoplankton communities. When grown in obligate diazotrophy, cells face the double burden of a more ATP-demanding N-acquisition mode and additional metabolic losses imposed by the transient storage of reducing potential as carbohydrate, compared to a hypothetical N2 assimilation directly driven by photosynthetic electron transport. Further, this energetic burden imposed by N2-fixation could not be alleviated, despite the high irradiance level within the cultures, because photosynthesis was limited by the availability of dissolved inorganic carbon (DIC), and possibly by a constrained capacity for carbon storage. DIC limitation exacerbates the costs on growth imposed by nitrogen fixation. Therefore, the competitive efficiency of diazotrophs could be hindered in areas with insufficient renewal of dissolved gases and/or with intense phytoplankton biomass that both decrease available light energy and draw the DIC level down.

9.
Front Microbiol ; 12: 620915, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33613489

RESUMO

Unicellular nitrogen fixing cyanobacteria (UCYN) are abundant members of phytoplankton communities in a wide range of marine environments, including those with rapidly changing nitrogen (N) concentrations. We hypothesized that differences in N availability (N2 vs. combined N) would cause UCYN to shift strategies of intracellular N and C allocation. We used transmission electron microscopy and nanoscale secondary ion mass spectrometry imaging to track assimilation and intracellular allocation of 13C-labeled CO2 and 15N-labeled N2 or NO3 at different periods across a diel cycle in Cyanothece sp. ATCC 51142. We present new ideas on interpreting these imaging data, including the influences of pre-incubation cellular C and N contents and turnover rates of inclusion bodies. Within cultures growing diazotrophically, distinct subpopulations were detected that fixed N2 at night or in the morning. Additional significant within-population heterogeneity was likely caused by differences in the relative amounts of N assimilated into cyanophycin from sources external and internal to the cells. Whether growing on N2 or NO3, cells prioritized cyanophycin synthesis when N assimilation rates were highest. N assimilation in cells growing on NO3 switched from cyanophycin synthesis to protein synthesis, suggesting that once a cyanophycin quota is met, it is bypassed in favor of protein synthesis. Growth on NO3 also revealed that at night, there is a very low level of CO2 assimilation into polysaccharides simultaneous with their catabolism for protein synthesis. This study revealed multiple, detailed mechanisms underlying C and N management in Cyanothece that facilitate its success in dynamic aquatic environments.

10.
Biol Futur ; 71(4): 371-382, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34554456

RESUMO

Occurrence of the smallest phototrophic microorganisms (photoautotrophic picoplankton, APP) in Lake Balaton was discovered in the early 1980s. This triggered a series of systematic studies on APP and resulted in the setting of a unique long-term picoplankton dataset. In this review, we intend to summarize the obtained results and to give a new insight on APP ecology and diversity in Lake Balaton. According to the results, APP dynamics depends on trophic state, temperature, nutrient, and light availability, as well as grazing pressure. APP abundance in Lake Balaton decreased to a low level (1-2 × 105 cells mL-1) as a consequence of decreasing nutrient supply (oligotrophication) during the past more than two decades, and followed a characteristic seasonal dynamics with higher abundance values from spring to autumn than in winter. Concomitantly, however, the APP contribution to both phytoplankton biomass and primary production increased (up to 70% and 40-50%, respectively) during oligotrophication. Regarding annual pattern, picocyanobacteria are dominant from spring to autumn, while in winter, picoeukaryotes are the most abundant, most likely due to the different light and temperature optima of these groups. Within picocyanobacteria, single cells and microcolonies were both observed with mid-summer dominance of the latter which correlated well with the density of cladocerans. Community-level chromatic adaptation (i.e., dominance of phycoerythrin- or phycocyanin-rich forms) of planktonic picocyanobacteria was also found as a function of underwater light quality. Sequence analysis studies of APP in Lake Balaton revealed that both picocyanobacteria and picoeukaryotes represent a diverse and dynamic community consisting several freshwater genotypes (picocyanobacteria: Synechococcus, Cyanobium; picoeukaryotes: Choricystis, Stichococcus, Mychonastes, Nannochloris, and Nannochloropsis).


Assuntos
Lagos/microbiologia , Fitoplâncton/patogenicidade , Hungria , Lagos/análise
11.
FEMS Microbiol Ecol ; 95(8)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31291460

RESUMO

Aerobic anoxygenic phototrophs (AAPs) are a group of photoheterotrophic bacteria common in natural waters. Here, AAP abundance and contribution to total bacterial abundance and biomass were investigated to test whether the trophic status of a lake or content of coloured dissolved organic matter (CDOM) play a role in determining AAP distribution and abundance in shallow inland lakes, with special focus on hypertrophic and polyhumic waters. Twenty-six different shallow lakes in Hungary were monitored. AAP abundance and biomass were determined by epifluorescence microscopy. The lakes exhibit a broad range of CDOM (2-7000 mg Pt L-1) and phytoplankton biomass (2-1200 µg L-1 chlorophyll a concentration). Very high AAP abundance (up to 3 × 107 cells mL-1) was observed in polyhumic and hypertrophic shallow lakes. AAP abundance was influenced by phytoplankton biomass and CDOM content, and these effects were interrelated. As determined, 40 µg L-1 chlorophyll a and 52 mg Pt L-1 CDOM are threshold levels above which these effects have a synergistic relationship. Hence, the observed high AAP abundance in some soda pans is a consequence of combined hypertrophy and high CDOM content. AAP contribution was influenced by total suspended solids (TSS) content: the success of AAP cells could be explained by high TSS levels, which might be explained by the decrease of their selective grazing control.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Substâncias Húmicas/análise , Microbiologia da Água , Biomassa , Clorofila A/análise , Processos Heterotróficos , Hungria , Lagos/química , Lagos/microbiologia , Processos Fototróficos , Fitoplâncton/química
12.
Environ Microbiol ; 20(2): 546-560, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29076633

RESUMO

The oceanic unicellular diazotrophic cyanobacterium Crocosphaera watsonii WH8501 exhibits large diel changes in abundance of both Photosystem II (PSII) and Photosystem I (PSI). To understand the mechanisms underlying these dynamics, we assessed photosynthetic parameters, photosystem abundance and composition, and chlorophyll-protein biosynthesis over a diel cycle. Our data show that the decline in PSII activity and abundance observed during the dark period was related to a light-induced modification of PSII, which, in combination with the suppressed synthesis of membrane proteins, resulted in monomerization and gradual disassembly of a large portion of PSII core complexes. In the remaining population of assembled PSII monomeric complexes, we detected the non-functional version of the D1 protein, rD1, which was absent in PSII during the light phase. During the dark period, we also observed a significant decoupling of phycobilisomes from PSII and a decline in the chlorophyll a quota, which matched the complete loss of functional PSIIs and a substantial decrease in PSI abundance. However, the remaining PSI complexes maintained their photochemical activity. Thus, during the nocturnal period of nitrogen fixation C. watsonii operates a suite of regulatory mechanisms for efficient utilization/recycling of cellular resources and protection of the nitrogenase enzyme.


Assuntos
Cianobactérias/metabolismo , Fotossíntese , Clorofila/metabolismo , Clorofila A/metabolismo , Escuridão , Fixação de Nitrogênio , Oceanos e Mares , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Ficobilissomas/metabolismo
13.
Photosynth Res ; 136(2): 183-198, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29090427

RESUMO

The slow kinetic phases of the chlorophyll a fluorescence transient (induction) are valuable tools in studying dynamic regulation of light harvesting, light energy distribution between photosystems, and heat dissipation in photosynthetic organisms. However, the origin of these phases are not yet fully understood. This is especially true in the case of prokaryotic oxygenic photoautotrophs, the cyanobacteria. To understand the origin of the slowest (tens of minutes) kinetic phase, the M-T fluorescence decline, in the context of light acclimation of these globally important microorganisms, we have compared spectrally resolved fluorescence induction data from the wild type Synechocystis sp. PCC 6803 cells, using orange (λ = 593 nm) actinic light, with those of mutants, ΔapcD and ΔOCP, that are unable to perform either state transition or fluorescence quenching by orange carotenoid protein (OCP), respectively. Our results suggest a multiple origin of the M-T decline and reveal a complex interplay of various known regulatory processes in maintaining the redox homeostasis of a cyanobacterial cell. In addition, they lead us to suggest that a new type of regulatory process, operating on the timescale of minutes to hours, is involved in dissipating excess light energy in cyanobacteria.


Assuntos
Clorofila/química , Clorofila/metabolismo , Synechocystis/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clorofila/genética , Clorofila A , Diurona/química , Fluorescência , Luz , Medições Luminescentes , Ficobilissomas/genética , Ficobilissomas/metabolismo , Cianeto de Potássio/química , Espectrometria de Fluorescência , Synechocystis/genética , Synechocystis/metabolismo , Temperatura
14.
Plant Physiol ; 163(2): 1037-46, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23922268

RESUMO

Thylakoid membranes are typical and essential features of both chloroplasts and cyanobacteria. While they are crucial for phototrophic growth of cyanobacterial cells, biogenesis of thylakoid membranes is not well understood yet. Dark-grown Synechocystis sp. PCC 6803 cells contain only rudimentary thylakoid membranes but still a relatively high amount of phycobilisomes, inactive photosystem II and active photosystem I centers. After shifting dark-grown Synechocystis sp. PCC 6803 cells into the light, "greening" of Synechocystis sp. PCC 6803 cells, i.e. thylakoid membrane formation and recovery of photosynthetic electron transport reactions, was monitored. Complete restoration of a typical thylakoid membrane system was observed within 24 hours after an initial lag phase of 6 to 8 hours. Furthermore, activation of photosystem II complexes and restoration of a functional photosynthetic electron transport chain appears to be linked to the biogenesis of organized thylakoid membrane pairs.


Assuntos
Complexo de Proteína do Fotossistema II/metabolismo , Synechocystis/citologia , Synechocystis/metabolismo , Tilacoides/metabolismo , Clorofila/metabolismo , Transporte de Elétrons/efeitos da radiação , Processos Heterotróficos/efeitos da radiação , Immunoblotting , Cinética , Luz , Oxigênio/metabolismo , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema I/metabolismo , Processos Fototróficos/efeitos da radiação , Subunidades Proteicas/metabolismo , Espectrometria de Fluorescência , Synechocystis/efeitos da radiação , Synechocystis/ultraestrutura , Tilacoides/efeitos da radiação , Tilacoides/ultraestrutura , Fatores de Tempo
15.
J Photochem Photobiol B ; 125: 137-45, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23811796

RESUMO

The fluorescence emission of the phycobilisome (PBS) core-membrane linker protein (L(CM)) can be directly quenched by photoactivated orange carotenoid protein (OCP) at room temperature both in vitro and in vivo, which suggests the crucial role of the OCP-L(CM) interaction in non-photochemical quenching (NPQ) of cyanobacteria. This implication was further supported (i) by low-temperature (77K) fluorescence emission and excitation measurements which showed a specific quenching of the corresponding long-wavelength fluorescence bands which belong to the PBS terminal emitters in the presence of photoactivated OCP, (ii) by systematic investigation of the fluorescence quenching and recovery in wild type and L(CM)-less cells of the model cyanobacterium Synechocystis sp. PCC 6803, and (iii) by the impact of dephosphorylation of isolated PBS on the quenching. The OCP binding site within the PBS and the most probable geometrical arrangement of the OCP-allophycocyanin (APC) complex was determined in silico using the crystal structures of OCP and APC. Geometrically modeled attachment of OCP to the PBS core is not at variance with the OCP-L(CM) interaction. It was concluded that besides being a very central element in the PBS to reaction center excitation energy transfer and PBS assembly, L(CM) also has an essential role in the photoprotective light adaptation processes of cyanobacteria.


Assuntos
Proteínas de Bactérias/química , Modelos Moleculares , Ficobilissomas/química , Synechocystis/metabolismo , Proteínas de Bactérias/metabolismo , Fluorescência , Ficobilissomas/metabolismo
16.
J Bioenerg Biomembr ; 45(1-2): 111-20, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23104119

RESUMO

The Mn(4)CaO(5) cluster of photosystem II (PSII) catalyzes the oxidation of water to molecular oxygen through the light-driven redox S-cycle. The water oxidizing complex (WOC) forms a triad with Tyrosine(Z) and P(680), which mediates electrons from water towards the acceptor side of PSII. Under certain conditions two other redox-active components, Tyrosine(D) (Y(D)) and Cytochrome b(559) (Cyt b(559)) can also interact with the S-states. In the present work we investigate the electron transfer from Cyt b(559) and Y(D) to the S(2) and S(3) states at 195 K. First, Y(D)(•) and Cyt b(559) were chemically reduced. The S(2) and S(3) states were then achieved by application of one or two laser flashes, respectively, on samples stabilized in the S(1) state. EPR signals of the WOC (the S(2)-state multiline signal, ML-S(2)), Y(D)(•) and oxidized Cyt b(559) were simultaneously detected during a prolonged dark incubation at 195 K. During 163 days of incubation a large fraction of the S(2) population decayed to S(1) in the S(2) samples by following a single exponential decay. Differently, S(3) samples showed an initial increase in the ML-S(2) intensity (due to S(3) to S(2) conversion) and a subsequent slow decay due to S(2) to S(1) conversion. In both cases, only a minor oxidation of Y(D) was observed. In contrast, the signal intensity of the oxidized Cyt b(559) showed a two-fold increase in both the S(2) and S(3) samples. The electron donation from Cyt b(559) was much more efficient to the S(2) state than to the S(3) state.


Assuntos
Grupo dos Citocromos b/química , Complexo de Proteína do Fotossistema II/química , Spinacia oleracea/enzimologia , Tirosina/química , Grupo dos Citocromos b/metabolismo , Transporte de Elétrons/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Conformação Proteica , Tirosina/metabolismo
17.
Biochim Biophys Acta ; 1817(11): 2016-26, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22683692

RESUMO

Ycf34 is a hypothetical chloroplast open reading frame that is present in the chloroplast genomes of several non-green algae. Ycf34 homologues are also encoded in all sequenced genomes of cyanobacteria. To evaluate the role of Ycf34 we have constructed and analysed a cyanobacterial mutant strain. Inactivation of ycf34 in Synechocystis sp. PCC 6803 showed no obvious phenotype under normal light intensity growth conditions. However, when the cells were grown under low light intensity they contained less and smaller phycobilisome antennae and showed a strongly retarded growth, suggesting an essential role of the Ycf34 polypeptide under light limiting conditions. Northern blot analysis revealed a very weak expression of the phycocyanin operon in the ycf34 mutant under light limiting growth in contrast to the wild type and to normal light conditions. Oxygen evolution and P(700) measurements showed impaired electron flow between photosystem II and photosystem I under these conditions which suggest that the impaired antenna size is most likely due to a highly reduced plastoquinone pool which triggers regulation on a transcriptional level. Using a FLAG-tagged Ycf34 we found that this protein is tightly bound to the thylakoid membranes. UV-vis and Mössbauer spectroscopy of the recombinant Ycf34 protein demonstrate the presence of an iron-sulphur cluster. Since Ycf34 lacks homology to known iron-sulphur cluster containing proteins, it might constitute a new type of iron-sulphur protein implicated in redox signalling or in optimising the photosynthetic electron transport chain.


Assuntos
Genes Bacterianos/fisiologia , Fases de Leitura Aberta , Fotossíntese , Synechocystis/metabolismo , Sequência de Aminoácidos , Transporte de Elétrons , Proteínas Ferro-Enxofre/análise , Luz , Dados de Sequência Molecular , Fenótipo , Ficocianina/genética , Plastoquinona/metabolismo , Synechocystis/genética , Synechocystis/crescimento & desenvolvimento
18.
Plant Cell Physiol ; 53(3): 528-42, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22302714

RESUMO

The atypical unicellular cyanobacterium Gloeobacter violaceus PCC 7421, which diverged very early during the evolution of cyanobacteria, can be regarded as a key organism for understanding many structural, functional, regulatory and evolutionary aspects of oxygenic photosynthesis. In the present work, the performance of two basic photosynthetic adaptation/protection mechanisms, common to all other oxygenic photoautrophs, had been challenged in this ancient cyanobacterium which lacks thylakoid membranes: state transitions and non-photochemical fluorescence quenching. Both low temperature fluorescence spectra and room temperature fluorescence transients show that G. violaceus is capable of performing state transitions similar to evolutionarily more recent cyanobacteria, being in state 2 in darkness and in state 1 upon illumination by weak blue or far-red light. Compared with state 2, variable fluorescence yield in state 1 is strongly enhanced (almost 80%), while the functional absorption cross-section of PSII is only increased by 8%. In contrast to weak blue light, which enhances fluorescence yield via state 1 formation, strong blue light reversibly quenches Chl fluorescence in G. violaceus. This strongly suggests regulated heat dissipation which is triggered by the orange carotenoid protein whose presence was directly proven by immunoblotting and mass spectrometry in this primordial cyanobacterium. The results are discussed in the framework of cyanobacterial evolution.


Assuntos
Cianobactérias/fisiologia , Cianobactérias/efeitos da radiação , Luz , Proteínas de Bactérias/metabolismo , Clorofila/metabolismo , Cianobactérias/efeitos dos fármacos , Diurona/farmacologia , Cinética , Processos Fotoquímicos/efeitos dos fármacos , Processos Fotoquímicos/efeitos da radiação , Espectrometria de Fluorescência , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/efeitos da radiação , Synechocystis/efeitos dos fármacos , Synechocystis/fisiologia , Synechocystis/efeitos da radiação , Temperatura , Tilacoides/efeitos dos fármacos , Tilacoides/metabolismo , Tilacoides/efeitos da radiação
19.
Biochim Biophys Acta ; 1817(2): 319-27, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22138629

RESUMO

Exposure of cyanobacterial or red algal cells to high light has been proposed to lead to excitonic decoupling of the phycobilisome antennae (PBSs) from the reaction centers. Here we show that excitonic decoupling of PBSs of Synechocystis sp. PCC 6803 is induced by strong light at wavelengths that excite either phycobilin or chlorophyll pigments. We further show that decoupling is generally followed by disassembly of the antenna complexes and/or their detachment from the thylakoid membrane. Based on a previously proposed mechanism, we suggest that local heat transients generated in the PBSs by non-radiative energy dissipation lead to alterations in thermo-labile elements, likely in certain rod and core linker polypeptides. These alterations disrupt the transfer of excitation energy within and from the PBSs and destabilize the antenna complexes and/or promote their dissociation from the reaction centers and from the thylakoid membranes. Possible implications of the aforementioned alterations to adaptation of cyanobacteria to light and other environmental stresses are discussed.


Assuntos
Cianobactérias , Luz , Ficobilissomas/química , Ficobilissomas/fisiologia , Ficobilissomas/efeitos da radiação , Estresse Fisiológico/fisiologia , Cianobactérias/metabolismo , Cianobactérias/ultraestrutura , Transporte de Elétrons/efeitos da radiação , Recuperação de Fluorescência Após Fotodegradação , Microscopia Confocal , Modelos Biológicos , Multimerização Proteica/efeitos da radiação , Estrutura Quaternária de Proteína , Espectrometria de Fluorescência , Estresse Fisiológico/efeitos da radiação , Synechocystis/metabolismo , Synechocystis/fisiologia , Synechocystis/ultraestrutura , Temperatura
20.
J Biol Chem ; 286(30): 26595-602, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21610078

RESUMO

The γ and ε subunits of F(0)F(1)-ATP synthase from photosynthetic organisms display unique properties not found in other organisms. Although the γ subunit of both chloroplast and cyanobacterial F(0)F(1) contains an extra amino acid segment whose deletion results in a high ATP hydrolysis activity (Sunamura, E., Konno, H., Imashimizu-Kobayashi, M., Sugano, Y., and Hisabori, T. (2010) Plant Cell Physiol. 51, 855-865), its ε subunit strongly inhibits ATP hydrolysis activity. To understand the physiological significance of these phenomena, we studied mutant strains with (i) a C-terminally truncated ε (ε(ΔC)), (ii) γ lacking the inserted sequence (γ(Δ198-222)), and (iii) a double mutation of (i) and (ii) in Synechocystis sp. PCC 6803. Although thylakoid membranes from the ε(ΔC) strain showed higher ATP hydrolysis and lower ATP synthesis activities than those of the wild type, no significant difference was observed in growth rate and in intracellular ATP level both under light conditions and during light-dark cycles. However, both the ε(ΔC) and γ(Δ198-222) and the double mutant strains showed a lower intracellular ATP level and lower cell viability under prolonged dark incubation compared with the wild type. These data suggest that internal inhibition of ATP hydrolysis activity is very important for cyanobacteria that are exposed to prolonged dark adaptation and, in general, for the survival of photosynthetic organisms in an ever-changing environment.


Assuntos
Adaptação Fisiológica/fisiologia , Proteínas de Bactérias/metabolismo , Escuridão , Luz , ATPases Translocadoras de Prótons/metabolismo , Synechocystis/enzimologia , Adaptação Fisiológica/efeitos da radiação , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , ATPases Translocadoras de Prótons/genética , Synechocystis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...