Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Ecol ; 82(5): 1042-51, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23574276

RESUMO

1. Understanding the functional significance of species interactions in ecosystems has become a major challenge as biodiversity declines rapidly worldwide. Ecosystem consequences arising from the loss of diversity either within trophic levels (horizontal diversity) or across trophic levels (vertical diversity) are well documented. However, simultaneous losses of species at different trophic levels may also result in interactive effects, with potentially complex outcomes for ecosystem functioning. 2. Because of logistical constraints, the outcomes of such interactions have been difficult to assess in experiments involving large metazoan species. Here, we take advantage of a detritus-based model system to experimentally assess the consequences of biodiversity change within both horizontal and vertical food-web components on leaf-litter decomposition, a fundamental process in a wide range of ecosystems. 3. Our concurrent manipulation of fungal decomposer diversity (0, 1 or 5 species), detritivore diversity (0, 1 or 3 species), and the presence of predatory fish scent showed that trophic complexity is key to eliciting diversity effects on ecosystem functioning. Specifically, although fungi and detritivores tended to promote decomposition individually, rates were highest in the most complete community where all trophic levels were represented at the highest possible species richness. In part, the effects were trait-mediated, reflected in the contrasting foraging responses of the detritivore species to predator scent. 4. Our results thus highlight the importance of interactive effects of simultaneous species loss within multiple trophic levels on ecosystem functioning. If a common phenomenon, this outcome suggests that functional ecosystem impairment resulting from widespread biodiversity loss could be more severe than inferred from previous experiments confined to varying diversity within single trophic levels.


Assuntos
Organismos Aquáticos/fisiologia , Ascomicetos/fisiologia , Biodiversidade , Ecossistema , Cadeia Alimentar , Invertebrados/fisiologia , Anfípodes/metabolismo , Anfípodes/fisiologia , Animais , Peso Corporal , França , Insetos/metabolismo , Insetos/fisiologia , Folhas de Planta , Quercus , Rios/microbiologia , Truta
2.
Ecology ; 92(1): 160-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21560686

RESUMO

Plant diversity influences many fundamental ecosystem functions, including carbon and nutrient dynamics, during litter breakdown. Mixing different litter species causes litter mixtures to lose mass at different rates than expected from component species incubated in isolation. Such nonadditive litter-mixing effects on breakdown processes often occur idiosyncratically because their direction and magnitude change with incubation time, litter species composition, and ecosystem characteristics. Taking advantage of results from 18 litter mixture experiments in streams, we examined whether the direction and magnitude of nonadditive mixing effects are randomly determined. Across 171 tested litter mixtures and 510 incubation time-by-mixture combinations, nonadditive effects on breakdown were common and on average resulted in slightly faster decomposition than expected. In addition, we found that the magnitude of nonadditive effects and the relative balance of positive and negative responses in mixtures change predictably over time, and both were related to an index of functional litter diversity and selected environmental characteristics. Based on these, it should be expected that nonadditive effects are stronger for litter mixtures made of functionally dissimilar species especially in smaller streams. Our findings demonstrate that effects of litter diversity on plant mixture breakdown are more predictable than generally thought. We further argue that the consequences of current worldwide homogenization in the composition of plant traits on carbon and nutrient dynamics could be better inferred from long-duration experiments that manipulate both functional litter diversity and ecosystem characteristics in "hotspots of biodiversity effects," such as small streams.


Assuntos
Biodegradação Ambiental , Ecossistema , Folhas de Planta , Árvores , Biomassa , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...