Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biosci ; 12(1): 43, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379326

RESUMO

BACKGROUND: Nuclear factor-κB is a multi-subunit transcription factor that plays a central role in cellular senescence. We previously reported that an increase in the p52 subunit is seen in senescent cells and aged tissue. In the current work, we examined the mechanism by which p52 is activated and whether the increase in p52 promotes senescence. RESULTS: Using both primary mouse embryonic fibroblasts (MEFs) and WI-38 human lung fibroblasts, we examined cells after serial passage and following prolonged culture. An increase in p52 was found in the nucleus relative to pre-senescent cells. The increase in p52 protein was not reflected by an increase in NFKB2 mRNA or by an increase in the abundance of upstream activating kinases, IKKα and NIK. To examine whether p52 promotes senescence, we over-expressed mature p52 in primary MEFs. Significantly more senescence was seen compared to control, a finding not seen with p52 mutated at critical DNA binding residues. In addition, blocking p52 nuclear translocation with the peptide inhibitor, SN52, decreased ß-galactosidase (ß-gal) formation. Subsequent filtration studies demonstrated that proteins in conditioned media (CM) were necessary for the increase in p52 and mass spectrometry identified S100A4 and cyclophilin A (CYPA) as potential factors in CM necessary for induction of p52. The requirement of these proteins in CM for induction of p52 was confirmed using depletion and supplementation studies. In addition, we found that activation of STAT3 signaling was required for the increase in p52. Finally, genome wide ChIP-sequencing analysis confirmed that there is an increase in p52 chromatin enrichment with senescence and identified several downstream factors whose expression is regulated by increased p52 binding. CONCLUSIONS: These results demonstrate that p52 nuclear translocation is increased in senescent cells by factors in conditioned media and that mature p52 induces cellular senescence. The data are consistent with the prior observation that p52 is elevated in aged tissue and support the hypothesis that p52 contributes to organismal aging.

2.
Sci Rep ; 11(1): 5665, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707466

RESUMO

The alkylating agent, temozolomide (TMZ), is the most commonly used chemotherapeutic for the treatment of glioblastoma (GBM). The anti-glioma effect of TMZ involves a complex response that includes G2-M cell cycle arrest and cyclin-dependent kinase 1 (CDK1) activation. While CDK1 phosphorylation is a well-described consequence of TMZ treatment, we find that TMZ also robustly induces CDK1 expression. Analysis of this pathway demonstrates that CDK1 is regulated by NF-κB via a putative κB-site in its proximal promoter. CDK1 was induced in a manner dependent on mature p50 and the atypical inhibitor κB protein, BCL-3. Treatment with TMZ induced binding of NF-κB to the κB-site as assessed by gel shift analysis and chromatin immunoprecipitation. Examination of a CDK1 promoter-reporter demonstrated the functional relevance of the κB-site and underlined the requirement of p50 and BCL-3 for activation. Targeted knockdown of CDK1 or chemical inhibition with the selective CDK1 inhibitor, RO-3306, potentiated the cytotoxic effect of TMZ. These results identify CDK1 as an NF-κB target gene regulated by p50 and BCL-3 and suggest that targeting CDK1 may be a strategy to improve the efficacy of TMZ against GBM.


Assuntos
Neoplasias Encefálicas/metabolismo , Proteína Quinase CDC2/metabolismo , Glioblastoma/metabolismo , NF-kappa B/metabolismo , Temozolomida/farmacologia , Proteína 3 do Linfoma de Células B/metabolismo , Sequência de Bases , Sítios de Ligação , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proteína Quinase CDC2/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Regiões Promotoras Genéticas/genética
3.
BMC Biol ; 18(1): 32, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209106

RESUMO

BACKGROUND: Nuclear factor-κB (NF-κB) plays a prominent role in promoting inflammation and resistance to DNA damaging therapy. We searched for proteins that modulate the NF-κB response as a prerequisite to identifying novel factors that affect sensitivity to DNA damaging chemotherapy. RESULTS: Using streptavidin-agarose pull-down, we identified the DExD/H-box RNA helicase, DDX39B, as a factor that differentially interacts with κB DNA probes. Subsequently, using both RNA interference and CRISPR/Cas9 technology, we demonstrated that DDX39B inhibits NF-κB activity by a general mechanism involving inhibition of p65 phosphorylation. Mechanistically, DDX39B mediates this effect by interacting with the pattern recognition receptor (PRR), LGP2, a pathway that required the cellular response to cytoplasmic double-stranded RNA (dsRNA). From a functional standpoint, loss of DDX39B promoted resistance to alkylating chemotherapy in glioblastoma cells. Further examination of DDX39B demonstrated that its protein abundance was regulated by site-specific sumoylation that promoted its poly-ubiquitination and degradation. These post-translational modifications required the presence of the SUMO E3 ligase, PIASx-ß. Finally, genome-wide analysis demonstrated that despite the link to the PRR system, DDX39B did not generally inhibit interferon-stimulated gene expression, but rather acted to attenuate expression of factors associated with the extracellular matrix, cellular migration, and angiogenesis. CONCLUSIONS: These results identify DDX39B, a factor with known functions in mRNA splicing and nuclear export, as an RNA-binding protein that blocks a subset of the inflammatory response. While these findings identify a pathway by which DDX39B promotes sensitization to DNA damaging therapy, the data also reveal a mechanism by which this helicase may act to mitigate autoimmune disease.


Assuntos
RNA Helicases DEAD-box/genética , NF-kappa B/metabolismo , Receptores de Reconhecimento de Padrão/genética , Transdução de Sinais , Alquilação , Animais , RNA Helicases DEAD-box/metabolismo , Sondas de DNA , Tratamento Farmacológico , Humanos , Camundongos , Receptores de Reconhecimento de Padrão/metabolismo
4.
Cancer Res ; 79(10): 2536-2548, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30940658

RESUMO

Alkylating chemotherapy is a central component of the management of glioblastoma (GBM). Among the factors that regulate the response to alkylation damage, NF-κB acts to both promote and block cytotoxicity. In this study, we used genome-wide expression analysis in U87 GBM to identify NF-κB-dependent factors altered in response to temozolomide and found the long noncoding RNA (lncRNA) MALAT1 as one of the most significantly upregulated. In addition, we demonstrated that MALAT1 expression was coregulated by p50 (p105) and p53 via novel κB- and p53-binding sites in the proximal MALAT1 coding region. Temozolomide treatment inhibited p50 recruitment to its cognate element as a function of Ser329 phosphorylation while concomitantly increasing p53 recruitment. Moreover, luciferase reporter studies demonstrated that both κB and p53 cis-elements were required for efficient transactivation in response to temozolomide. Depletion of MALAT1 sensitized patient-derived GBM cells to temozolomide cytotoxicity, and in vivo delivery of nanoparticle-encapsulated anti-MALAT1 siRNA increased the efficacy of temozolomide in mice bearing intracranial GBM xenografts. Despite these observations, in situ hybridization of GBM specimens and analysis of publicly available datasets revealed that MALAT1 expression within GBM tissue was not prognostic of overall survival. Together, these findings support MALAT1 as a target for chemosensitization of GBM and identify p50 and p52 as primary regulators of this ncRNA. SIGNIFICANCE: These findings identify NF-κB and p53 as regulators of the lncRNA MALAT1 and suggest MALAT1 as a potential target for the chemosensitization of GBM.


Assuntos
Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/metabolismo , Glioblastoma/tratamento farmacológico , NF-kappa B/metabolismo , RNA Longo não Codificante/biossíntese , Temozolomida/uso terapêutico , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular Tumoral , Dano ao DNA/genética , Técnicas de Silenciamento de Genes , Glioblastoma/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Prognóstico , RNA Longo não Codificante/genética , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Sci Transl Med ; 10(448)2018 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-29973405

RESUMO

The response of patients with gliomas to alkylating chemotherapy is heterogeneous. However, there are currently no universally accepted predictors of patient response to these agents. We identify the nuclear factor κB (NF-κB) co-regulator B cell CLL/lymphoma 3 (BCL-3) as an independent predictor of response to temozolomide (TMZ) treatment. In glioma patients with tumors that have a methylated O6-methylguanine DNA methyltransferase (MGMT) promoter, high BCL-3 expression was associated with a poor response to TMZ. Mechanistically, BCL-3 promoted a more malignant phenotype by inducing an epithelial-to-mesenchymal transition in glioblastomas through promoter-specific NF-κB dimer exchange. Carbonic anhydrase II (CAII) was identified as a downstream factor promoting BCL-3-mediated resistance to chemotherapy. Experiments in glioma xenograft mouse models demonstrated that the CAII inhibitor acetazolamide enhanced survival of TMZ-treated animals. Our data suggest that BCL-3 might be a useful indicator of glioma response to alkylating chemotherapy and that acetazolamide might be repurposed as a chemosensitizer for treating TMZ-resistant gliomas.


Assuntos
Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Glioma/tratamento farmacológico , Glioma/genética , Proteínas Proto-Oncogênicas/genética , Fatores de Transcrição/genética , Antineoplásicos Alquilantes/farmacologia , Proteína 3 do Linfoma de Células B , Anidrase Carbônica II/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Análise Multivariada , NF-kappa B/metabolismo , Regiões Promotoras Genéticas/genética , Modelos de Riscos Proporcionais , Multimerização Proteica , Proteínas Proto-Oncogênicas/metabolismo , Análise de Sobrevida , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Fator de Transcrição RelA/metabolismo , Fatores de Transcrição/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Cancer Res ; 75(10): 2039-48, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25808868

RESUMO

Temozolomide is used widely to treat malignant glioma, but the overall response to this agent is generally poor. Resistance to DNA-damaging drugs such as temozolomide has been related to the induction of antiapoptotic proteins. Specifically, the transcription factor NF-κB has been suggested to participate in promoting the survival of cells exposed to chemotherapy. To identify factors that modulate cytotoxicity in the setting of DNA damage, we used an unbiased strategy to examine the NF-κB-dependent expression profile induced by temozolomide. By this route, we defined the decoy receptor DcR1 as a temozolomide response gene induced by a mechanism relying upon p50/NF-κB1. A conserved NF-κB-binding sequence (κB-site) was identified in the proximal promoter and was demonstrated to be required for DcR1 induction by temozolomide. Loss-of-function and gain-of-function studies reveal that the atypical IκB protein, Bcl3, is also required for induction of DcR1 by temozolomide. Mechanistically, DcR1 attenuates temozolomide efficacy by blunting activation of the Fas receptor pathway in p53(+/+) glioma cells. Intracranial xenograft studies show that DcR1 depletion in glioma cells enhances the efficacy of temozolomide. Taken together, our results show how DcR1 upregulation mediates temozolomide resistance and provide a rationale for DcR1 targeting as a strategy to sensitize gliomas to this widely used chemotherapy.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Dacarbazina/análogos & derivados , Subunidade p50 de NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Receptores Chamariz do Fator de Necrose Tumoral/genética , Animais , Proteína 3 do Linfoma de Células B , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Dacarbazina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioma/tratamento farmacológico , Glioma/metabolismo , Humanos , Masculino , Camundongos Nus , Regiões Promotoras Genéticas , Ligação Proteica , Membro 10c de Receptores do Fator de Necrose Tumoral , Temozolomida , Ativação Transcricional , Receptores Chamariz do Fator de Necrose Tumoral/química , Receptores Chamariz do Fator de Necrose Tumoral/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Cell Cycle ; 14(4): 566-76, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25590437

RESUMO

The apical damage kinase, ATR, is activated by replication stress (RS) both in response to DNA damage and during normal S-phase. Loss of function studies indicates that ATR acts to stabilize replication forks, block cell cycle progression and promote replication restart. Although checkpoint failure and replication fork collapse can result in cell death, no direct cytotoxic pathway downstream of ATR has previously been described. Here, we show that ATR directly reduces survival by inducing phosphorylation of the p50 (NF-κB1, p105) subunit of NF-кB and moreover, that this response is necessary for genome maintenance independent of checkpoint activity. Cell free and in vivo studies demonstrate that RS induces phosphorylation of p50 in an ATR-dependent but DNA damage-independent manner that acts to modulate NF-кB activity without affecting p50/p65 nuclear translocation. This response, evident in human and murine cells, occurs not only in response to exogenous RS but also during the unperturbed S-phase. Functionally, the p50 response results in inhibition of anti-apoptotic gene expression that acts to sensitize cells to DNA strand breaks independent of damage repair. Ultimately, loss of this pathway causes genomic instability due to the accumulation of chromosomal breaks. Together, the data indicate that during S-phase ATR acts via p50 to ensure that cells with elevated levels of replication-associated DNA damage are eliminated.


Assuntos
Replicação do DNA/fisiologia , Instabilidade Genômica/fisiologia , Subunidade p50 de NF-kappa B/metabolismo , Fase S/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Ensaio Cometa , Primers do DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Instabilidade Genômica/genética , Humanos , Immunoblotting , Imunoprecipitação , Luciferases , Fosforilação , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Nanomedicine ; 10(1): 149-57, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23891990

RESUMO

A major obstacle to the management of malignant glioma is the inability to effectively deliver therapeutic agent to the tumor. In this study, we describe a polymeric nanoparticle vector that not only delivers viable therapeutic, but can also be tracked in vivo using MRI. Nanoparticles, produced by a non-emulsion technique, were fabricated to carry iron oxide within the shell and the chemotherapeutic agent, temozolomide (TMZ), as the payload. Nanoparticle properties were characterized and subsequently their endocytosis-mediated uptake by glioma cells was demonstrated. Convection-enhanced delivery (CED) can disperse nanoparticles through the rodent brain and their distribution is accurately visualized by MRI. Infusion of nanoparticles does not result in observable animal toxicity relative to control. CED of TMZ-bearing nanoparticles prolongs the survival of animals with intracranial xenografts compared to control. In conclusion, the described nanoparticle vector represents a unique multifunctional platform that can be used for image-guided treatment of malignant glioma. FROM THE CLINICAL EDITOR: GBM remains one of the most notoriously treatment-unresponsive cancer types. In this study, a multifunctional nanoparticle-based temozolomide delivery system was demonstrated to possess enhanced treatment efficacy in a rodent xenograft GBM model, with the added benefit of MRI-based tracking via the incorporation of iron oxide as a T2* contrast material in the nanoparticles.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Dacarbazina/análogos & derivados , Sistemas de Liberação de Medicamentos , Glioma/tratamento farmacológico , Nanopartículas/química , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Linhagem Celular Tumoral , Convecção , Dacarbazina/administração & dosagem , Dacarbazina/química , Compostos Férricos/química , Glioma/diagnóstico por imagem , Glioma/patologia , Humanos , Imageamento por Ressonância Magnética , Camundongos , Nanopartículas/uso terapêutico , Polímeros/química , Polímeros/uso terapêutico , Radiografia , Ratos , Temozolomida , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Aging (Albany NY) ; 6(11): 931-43, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25553648

RESUMO

NF-κB is a major regulator of age-dependent gene expression and the p50/NF-κB1 subunit is an integral modulator of NF-κB signaling. Here, we examined Nfkb1-/- mice to investigate the relationship between this subunit and aging. Although Nfkb1-/- mice appear similar to littermates at six months of age, by 12 months they have a higher incidence of several observable age-related phenotypes. In addition, aged Nfkb1-/- animals have increased kyphosis, decreased cortical bone, increased brain GFAP staining and a decrease in overall lifespan compared to Nfkb1+/+. In vitro, serially passaged primary Nfkb1-/- MEFs have more senescent cells than comparable Nfkb1+/+ MEFs. Also, Nfkb1-/- MEFs have greater amounts of phospho-H2AX foci and lower levels of spontaneous apoptosis than Nfkb1+/+, findings that are mirrored in the brains of Nfkb1-/- animals compared to Nfkb1+/+. Finally, in wildtype animals a substantial decrease in p50 DNA binding is seen in aged tissue compared to young. Together, these data show that loss of Nfkb1 leads to early animal aging that is associated with reduced apoptosis and increased cellular senescence. Moreover, loss of p50 DNA binding is a prominent feature of aged mice relative to young. These findings support the strong link between the NF-κB pathway and mammalian aging.


Assuntos
Senilidade Prematura , Envelhecimento/metabolismo , Subunidade p50 de NF-kappa B/deficiência , Fatores Etários , Envelhecimento/genética , Envelhecimento/patologia , Animais , Apoptose , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Senescência Celular , DNA/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Genótipo , Gliose , Histonas/metabolismo , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Cifose/genética , Cifose/metabolismo , Cifose/patologia , Longevidade , Camundongos Endogâmicos C57BL , Camundongos Knockout , Subunidade p50 de NF-kappa B/genética , Fenótipo , Fosforilação , Fatores de Tempo
10.
Aging Cell ; 10(3): 466-82, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21385309

RESUMO

Astrocytes secrete growth factors that are both neuroprotective and supportive for the local environment. Identified by glial fibrillary acidic protein (GFAP) expression, astrocytes exhibit heterogeneity in morphology and in the expression of phenotypic markers and growth factors throughout different adult brain regions. In adult neurogenic niches, astrocytes secrete vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2) within the neurogenic niche and are also a source of special GFAP-positive multipotent neural stem cells (NSCs). Normal aging is accompanied by a decline in CNS function and reduced neurogenesis. We asked whether a decreased availability of astrocyte-derived factors may contribute to the age-related decline in neurogenesis. Determining alterations of astrocytic activity in the aging brain is crucial for understanding CNS homeostasis in aging and for assessing appropriate therapeutic targets for an aging population. We found region-specific alterations in the gene expression of GFAP, VEGF, and FGF-2 and their receptors in the aged brain corresponding to changes in astrocytic reactivity, supporting astrocytic heterogeneity and demonstrating a differential aging effect. We found that GFAP-positive NSCs uniquely coexpress both VEGF and its key mitotic receptor Flk-1 in both young and aged hippocampus, indicating a possible autocrine/paracrine signaling mechanism. VEGF expression is lost once NSCs commit to a neuronal fate, but Flk-1-mediated sensitivity to VEGF signaling is maintained. We propose that age-related astrocytic changes result in reduced VEGF and FGF-2 signaling, which in turn limits NSC and progenitor cell maintenance and contributes to decreased neurogenesis.


Assuntos
Envelhecimento , Astrócitos/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Proteína Glial Fibrilar Ácida , Hipocampo/metabolismo , Células-Tronco Neurais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Adulto , Animais , Astrócitos/citologia , Proliferação de Células , Fator 2 de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica , Variação Genética , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/citologia , Humanos , Imuno-Histoquímica , Filamentos Intermediários/genética , Filamentos Intermediários/metabolismo , Células-Tronco Neurais/citologia , Neurônios/citologia , Neurônios/metabolismo , Ratos , Ratos Endogâmicos F344 , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
11.
Aging Cell ; 3(6): 345-51, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15569351

RESUMO

Neurogenesis occurs in two germinal centres of the adult brain and persists with increasing age, although at a reduced level. This observation, that the mature brain can support neurogenesis, has given rise to the hope that neural stem cells could be used to repair the brain by repopulating regions suffering from neuronal loss as a result of injury or disease. The aging brain is vulnerable to mild cognitive impairment, increasing incidence of stroke, and a variety of neurodegenerative diseases. However, most studies to date have focused on the young adult brain, and relatively little information is available about the regulation of neurogenesis in the aged brain or the potential of using neural stem cells to repair the aged brain. This review summarizes the current state of knowledge on neurogenesis in the young adult brain and discusses the information available on age-related changes in neurogenesis. Possible therapeutic strategies using neural stem cells for repair of the aging brain are considered.


Assuntos
Envelhecimento/fisiologia , Encefalopatias/terapia , Encéfalo/fisiologia , Neurônios/fisiologia , Transplante de Células-Tronco , Células-Tronco/fisiologia , Animais , Encéfalo/citologia , Giro Denteado/citologia , Giro Denteado/fisiologia , Humanos , Neurônios/citologia , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...