Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Chem Phys ; 146(8): 084501, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28249453

RESUMO

The spectroscopic properties of bromine in aqueous systems suggest it can behave as either hydrophilic or hydrophobic solute. In small water clusters, the halogen bond and the hydrogen-halogen interaction are responsible for its specific way of binding. In water hydrates, it is efficiently hosted by two different cages forming the crystal structure and it has been frequently assumed that there is little or no interaction between the guest and the host. Bromine in liquid solution poses a challenging question due to its non-negligible solubility and the large blue shift measured in its absorption spectra. Using a refined semi-empirical force field, PM3-PIF, we performed a Born-Oppenheimer molecular dynamics study of bromine in liquid water. Here we present a detailed study in which we retrieved the most representative hydration structures in terms of the most frequent positions around bromine and the most common water orientations. Albeit being an approximate description of the total hydration phenomenon, it captures the contribution of the leading molecular interactions in form of the recurrent structures. Our findings confirm that the spectroscopic signature is mainly caused by the closest neighbors. The dynamics of the whole first hydration shell strongly suggests that the external molecules in that structure effectively isolate the bulk from the presence of bromine. The solvation structure fluctuates from a hydrophilic to a hydrophobic-like environment along the studied trajectory.

2.
J Phys Chem A ; 119(3): 452-9, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25531916

RESUMO

This work looks into the spectroscopic behavior of bromine molecules trapped in clathrate cages combining different methodologies. We developed a semiempirical quantum mechanical model to incorporate through molecular dynamics trajectories, the effect movement of bromine molecules in clathrate cages has on its absorption spectra. A simple electrostatic model simulating the cage environment around bromine predicts a blue shift in the spectra, in good agreement with the experimental evidence.

3.
J Phys Chem A ; 109(15): 3425-32, 2005 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-16833679

RESUMO

This work examines the ability of semiempirical methods to describe the structure of liquid water. Particularly, the standard AM1 and PM3 methods together with recently developed PM3-PIF and PM3-MAIS parametrizations have been considered. We perform molecular dynamics simulations for a system consisting of 64 or 216 water molecules in a periodic cubic box. The whole system is described quantum mechanically. Calculations with 64 molecules have been carried out using standard SCF techniques whereas calculations with 216 molecules have been done using the divide and conquer approach. This method has also been used in one simulation case with 64 molecules for test purposes. Within this scope, the molecular dynamics program ROAR have been coupled with a linear scaling semiempirical code (DivCon) implemented in a parallel MPI version. The predicted liquid water structure using either AM1 or PM3 is shown to be very poor due to well-known limitations of these methods describing hydrogen bonds. In contrast, PM3-PIF and PM3-MAIS calculations lead to results in reasonably good agreement with experimental data. The best results for the heat of vaporization are obtained with the PM3-PIF method. The average induced dipole moment of the water molecule in the liquid is underestimated by all semiempirical techniques, which seems to be related to the NDDO approximation and to the use of minimal basis sets. A brief discussion on charge-transfer effects in liquid water is also presented.


Assuntos
Água/química , Simulação por Computador , Íons/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...