Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 23(8): 862-879, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37584747

RESUMO

The Mars 2020 Perseverance rover is equipped with a Sample Caching System (SCS) designed to collect and cache martian core and regolith samples for potential return to Earth. To ensure the integrity of these samples, the mission requirements for each encapsulated sample for return is less than one Earth-sourced viable organism (VO) and more than a 99.9% probability of being free of any Earth-sourced VO. To satisfy the stringent biological contamination requirements in support of return sample science investigations, special bioburden mitigation and reduction approaches were developed and implemented for SCS hardware that would directly contact or be in close proximity to the martian samples. In this study, we describe the implemented approaches for microbiological contamination reduction and mitigation, detail the processes of the SCS aseptic assembly, and report the estimated VO for each returned sample. We found that our conservative estimate of the computed probability of a single VO in the returned sample is more than one order of magnitude lower than the biological contamination requirement while the best estimate exceeds two orders of magnitude.


Assuntos
Marte , Voo Espacial , Meio Ambiente Extraterreno , Astronave , Exobiologia , Planeta Terra
2.
Life Sci Space Res (Amst) ; 23: 50-59, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31791605

RESUMO

The Joint Workshop on Induced Special Regions convened scientists and planetary protection experts to assess the potential of inducing special regions through lander or rover activity. An Induced Special Region is defined as a place where the presence of the spacecraft could induce water activity and temperature to be sufficiently high and persist for long enough to plausibly harbor life. The questions the workshop participants addressed were: (1) What is a safe stand-off distance, or formula to derive a safe distance, to a purported special region? (2) Questions about RTGs (Radioisotope Thermoelectric Generator), other heat sources, and their ability to induce special regions. (3) Is it possible to have an infected area on Mars that does not contaminate the rest of Mars? The workshop participants reached a general consensus addressing the posed questions, in summary: (1) While a spacecraft on the surface of Mars may not be able to explore a special region during the prime mission, the safe stand-off distance would decrease with time because the sterilizing environment, that is the martian surface would progressively clean the exposed surfaces. However, the analysis supporting such an exploration should ensure that the risk to exposing interior portions of the spacecraft (i.e., essentially unsterilized) to the martian surface is minimized. (2) An RTG at the surface of Mars would not create a Special Region but the short-term result depends on kinetics of melting, freezing, deliquescence, and desiccation. While a buried RTG could induce a Special Region, it would not pose a long-term contamination threat to Mars, with the possible exception of a migrating RTG in an icy deposit. (3) Induced Special Regions can allow microbial replication to occur (by definition), but such replication at the surface is unlikely to globally contaminate Mars. An induced subsurface Special Region would be isolated and microbial transport away from subsurface site is highly improbable.


Assuntos
Meio Ambiente Extraterreno , Planetas , Voo Espacial/estatística & dados numéricos , Astronave/instrumentação , Vida , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...